Contribution of the lycotetraose moiety of α-tomatine to the interaction with the main proteases of coronaviruses PEDV and SARS-CoV-2
محورهای موضوعی : Natural Products: Isolation and CharacterizationGerard Vergoten 1 , Christian Bailly 2
1 - University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France
2 - OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France
کلید واژه: Lycotetraose, tomatidine, main protease, tomatine, SARS-CoV-2, PEDV,
چکیده مقاله :
We have investigated the interaction of the steroidal alkaloid tomatidine (TD) and its glycosylated derivative -tomatine (αTM) with the 3C-like protease (3CLpro) of PEDV and with the main protease (Mpro) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible forWe have investigated the interaction of the steroidal alkaloid tomatidine (TD) and its glycosylated derivative α-tomatine (αTM) with the 3C-like protease (3CLpro) of PEDV and with the main protease (Mpro) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19, using molecular modeling. αTM can generate more stable complexes with both proteases than TD. The lycotetraosyl moiety of αTM largely occupies the binding cavity, pushing the steroid moiety outside of the groove, whereas with the aglycone TD fits into the site. The specific contribution of the tetrasaccharide was further investigated via the modeling of the unsubstituted lycotetraose molecule, and the glycoalkaloid demissine (DEM) bearing a lycotetraose unit and a different steroidal skeleton demissidine. The binding of DEM to the proteases is essentially driven by the carbohydrate moiety, projecting the aglycone outside of the binding cavity. This study shed light on the protein-binding capacity of the lycotetraose unit.COVID-19, using molecular modeling. TM can generate more stable complexes with both proteases than TD. The lycotetraosyl moiety of TM largely occupies the binding cavity, pushing the steroid moiety outside of the groove, whereas with the aglycone TD fits into the site. The specific contribution of the tetrasaccharide was further investigated via the modeling of the unsubstituted lycotetraose molecule, and the glycoalkaloid demissine (DEM) bearing a lycotetraose unit and a different steroidal skeleton demissidine. The binding of DEM to the proteases is essentially driven by the carbohydrate moiety, projecting the aglycone outside of the binding cavity.
Bailly, C., 2021. The steroidal alkaloids alpha-tomatine and tomatidine: Panorama of their mode of action and pharmacological properties. Steroids 176, 108933.
Carere, J., Benfield, A.H., Ollivier, M., Liu, C.J., Kazan, K., Gardiner, D.M., 2017. A tomatinase-like enzyme acts as a virulence factor in the wheat pathogen Fusarium graminearum. Fungal Genet. Biol. 100, 33-41.
Choi, S.H., Ahn, J.B., Kozukue, N., Kim, H.J., Nishitani, Y., Zhang, L., Mizuno, M., Levin, C.E., Friedman, M., 2012. Structure-activity relationships of alpha-, beta(1)-, gamma-, and delta-tomatine and tomatidine against human breast (MDA-MB-231), gastric (KATO-III), and prostate (PC3) cancer cells. J. Agric. Food Chem. 60, 3891-3899.
Diosa-Toro M., Troost B., van de Pol D., Heberle A.M., Urcuqui-Inchima S., Thedieck K., Smit J.M., 2019. Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Res. 161, 90-99.
Douangamath, A., Fearon, D., Gehrtz, P., Krojer, T., Lukacik, P., Owen, C.D., Resnick, E., Strain-Damerell, C., Aimon, A., Ábrányi-Balogh, P., Brandão-Neto, J., Carbery, A., Davison, G., Dias, A., Downes, T.D., Dunnett, L., Fairhead, M., Firth, J.D., Jones, S.P., Keeley, A., Keserü, G.M., Klein, H.F., Martin, M.P., Noble, M.E.M., O'Brien, P., Powell, A., Reddi, R.N., Skyner, R., Snee, M., Waring, M.J., Wild, C., London, N., von Delft, F., Walsh, M.A., 2020. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun. 11, 5047.
Friedman, M., Levin, C.E., Lee, S.U., Kim, H.J., Lee, I.S., Byun, J.O., Kozukue, N., 2009. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J. Agric. Food Chem. 57, 5727-5733.
Friedman, M., 2013. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, alpha-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 61, 9534-9550.
Friedman, M., 2015. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 63, 3323-3337.
Gao, M., Li, H., Ye, C., Chen, K., Jiang, H., Yu, K., 2021. Glycan epitopes and potential glycoside antagonists of DC-SIGN involved in COVID-19: in silico study. Biomolecules 11, 1586.
Homans, S.W., 1990. A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry 29, 9110-9118.
Ikeda, T., Tsumagari, H., Honbu, T., Nohara, T., 2003. Cytotoxic activity of steroidal glycosides from solanum plants. Biol. Pharm. Bull. 26, 1198-201.
Ikeda, T., Yamauchi, K., Nakano, D., Nakanishi, K., Miyashita, H., Ito, S.I., Nohara, T., 2006. Chemical trans-glycosylation of bioactive glycolinkage: synthesis of an α-lycotetraosyl cholesterol. Tetrahedron Lett. 47, 4355-4359.
Jared, J.J., Murungi, L.K., Wesonga, J., Torto, B., 2016. Steroidal glycoalkaloids: chemical defence of edible African nightshades against the tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Pest Manag. Sci. 72, 828-836.
Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R., 1997. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727-748.
Jones, N.A., Nepogodiev, S.A., Field, R.A., 2015. Efficient synthesis of methyl lycotetraoside, the tetrasaccharide constituent of the tomato defence glycoalkaloid α-tomatine. Org. Biomol. Chem. 3, 3201-3206.
Jorgensen, W.L., Tirado-Rives, J., 1996. Monte Carlo versus molecular dynamics for conformational sampling. J. Phys. Chem. 100, 14508-14513.
Jorgensen, W.L., Tirado-Rives, J., 2005. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J. Comput. Chem. 26, 1689-1700.
Jorgensen, W.L., Ulmschneider, JP, Tirado-Rives, J., 2004. Free energies of hydration from a generalized Born model and an ALL-atom force field. J. Phys. Chem. B 108, 16264-16270.
Kozukue, N., Yoon, K.S., Byun, G.I., Misoo, S., Levin, C.E., Friedman, M., 2008. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. J. Agric. Food Chem. 56, 11920-11928.
Kuroda, M., Ori, K., Takayama, H., Sakagami, H., Mimaki, Y., 2015. Karataviosides G-K, five new bisdesmosidic steroidal glycosides from the bulbs of Allium karataviense. Steroids 93, 96-104.
Lagant, P., Nolde, D., Stote, R., Vergoten, G., Karplus, M., 2004. Increasing normal modes analysis accuracy: The SPASIBA spectroscopic force field introduced into the CHARMM program. J. Phys. Chem. A 108, 4019-4029.
Liu, J., Kanetake, S., Wu, Y.H., Tam, C., Cheng, L.W., Land, K.M., Friedman, M., 2016. Antiprotozoal effects of the tomato tetrasaccharide glycoalkaloid tomatine and the aglycone tomatidine on mucosal trichomonads. J. Agric. Food Chem. 64, 8806-8810.
Manabe, H., Fujiwara, Y., Ikeda, T., Ono, M., Murakami, K., Zhou, J.R., Yokomizo, K., Nohara, T., 2013. Saponins esculeosides B-1 and B-2 in Italian canned tomatoes. Chem. Pharm. Bull. (Tokyo) 61, 764-767.
Meziane-Tani, M., Lagant, P., Semmoud, A., Vergoten, G., 2006. The SPASIBA force field for chondroitin sulfate: vibrational analysis of D-glucuronic and N-acetyl-D-galactosamine 4-sulfate sodium salts. J. Phys. Chem. A 110, 11359-11370.
Nath, L.R., Gorantla, J.N., Thulasidasan, A.K., Vijayakurup, V., Shah, S., Anwer, S., Joseph, S.M., Antony, J., Veena, K.S., Sundaram, S., Marelli, U.K., Lankalapalli, R.S., Anto, R.J., 2016. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci. Rep. 6, 36318.
Nohara, T., Ono, M., Ikeda, T., Fujiwara, Y., El-Aasr, M., 2010. The tomato saponin, esculeoside A. J. Nat. Prod. 73, 1734-1741.
Ökmen, B., Etalo, D.W., Joosten, M.H.A.J., Bouwmeester, H.J., de Vos, R.C.H., Collemare, J., de Wit, P.J.G.M., 2013. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol. 198, 1203-1214.
Osman, S.F., Herb, S.F., Fitzpatrick, T.J., Sinden, S.L., 1976. Commersonine, a new glycoalkaloid from two Solanum species. Phytochemistry 15, 1065-1067.
Sandrock, RW, Vanetten, HD., 1998. Fungal sensitivity to and enzymatic degradation of the phytoanticipin alpha-tomatine. Phytopathology 88, 137-143.
Takeo, K., Nakaji, T., Shinmitsu, K., 1984. Synthesis of lycotetraose. Carbohydrate Res. 133, 275-287.
Troost, B., Mulder, L.M., Diosa-Toro, M., van de Pol, D., Rodenhuis-Zybert, I.A., Smit, J.M., 2020. Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro. Sci. Rep. 10, 6364.
Troost-Kind, B., van Hemert, M.J., van de Pol, D., van der Ende-Metselaar, H., Merits, A., Borggrewe, M., Rodenhuis-Zybert, I.A., Smit, J.M., 2021. Tomatidine reduces chikungunya virus progeny release by controlling viral protein expression. PLoS Negl. Trop. Dis. 15, e0009916.
Vázquez, A., González, G., Ferreira, F., Moyna, P., Kenne, L., 1997. Glycoalkaloids of Solanum commersonii Dun. ex Poir. Euphytica 95, 195-201.
Vergoten, G., Mazur, I., Lagant, P., Michalski, J.C., Zanetta, J.P., 2003. The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides. Biochimie 85, 65-73.
Wang, P., Bai, J., Liu, X., Wang, M., Wang, X., Jiang, P., 2020. Tomatidine inhibits porcine epidemic diarrhea virus replication by targeting 3CL protease. Vet. Res. 51,136.
Wang, Y.C., Yang, W.H., Yang, C.S., Hou, M.H., Tsai, C.L., Chou, Y.Z., Hung, M.C., Chen, Y., 2020. Structural basis of SARS-CoV-2 main protease inhibition by a broad-spectrum anti-coronaviral drug. Am. J. Cancer Res. 10, 2535-2545.
Woods, K., Hamilton, C.J., Field, R.A., 2004. Enzymatic liberation of lycotetraose from the Solanum glycoalkaloid alpha-tomatine. Carbohydr. Res. 339, 2325-2328.
Wu, M., Han, G., Meng, C., Wang, Z., Liu, Y., Wang, Q., 2014. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of glycoconjugates of phenanthroindolizidines alkaloids. Mol. Divers. 18, 25-37.
Yahara, S., Uda, N., Yoshio, E., Yae, E., 2004. Steroidal alkaloid glycosides from tomato (Lycopersicon esculentum). J. Nat. Prod. 67, 500-502.
Ye, G., Deng, F., Shen, Z., Luo, R., Zhao, L., Xiao, S., Fu, Z.F., Peng, G., 2016. Structural basis for the dimerization and substrate recognition specificity of porcine epidemic diarrhea virus 3C-like protease. Virology 494, 225-235.
Zafar, A., Reynisson, J., 2016. Hydration free energy as a molecular descriptor in drug design: A feasibility study. Mol. Inform. 35, 207-214.