Stigmasterol expedites ester production in Trigonella foenum-graecum L: In vivo and in vitro propagates
محورهای موضوعی : Medicinal and Herbal PlantsNaila Safdar 1 , Shaghufta Perveen 2 , Saman Fatima 3 , Gul-e-Saba Chaudhry 4
1 - Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
2 - Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
3 - Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
4 - Institute of Marine Biotechnology, Universiti Malaysia, Terengganu, Kuala Terengganu, Malaysia
کلید واژه: Antidiabetic potential, Antitumor effect, Callogenesis, Elicitation, Stigmasterol ,
چکیده مقاله :
Fenugreek (Trigonella foenum-graecum L.), a popular spice, is explored in the literature for its chemical constituents and pharmacological potential. In the current investigation, a comparative analysis was conducted to evaluate the role of stigmasterol in the biochemical and therapeutic properties of fenugreek grown under controlled and natural environmental conditions. Fenugreek treated with stigmasterol significantly (p < 0.001) increased the production of alkaloids, flavonoids, phenolics, saponins, and tannins, as well as antioxidants, in field grown plants compared to in vitro calli. In vivo-grown plants also showed stronger antitumor (IC50 = 0.001 μg/mL) and antidiabetic activities (IC50 < 1.0 µg/mL) upon treatment with stigmasterol. GC-MS analysis depicted an augmentation of ester acids along with phytol and 2,4-di-tert-butylphenol production in stigmasterol-treated samples. This suggests that stigmasterol effectively boosts the medicinal properties of fenugreek and could be explored for enhancing the bioactive properties of other medicinal plants.
Fenugreek (Trigonella foenum-graecum L.), a popular spice, is explored in the literature for its chemical constituents and pharmacological potential. In the current investigation, a comparative analysis was conducted to evaluate the role of stigmasterol in the biochemical and therapeutic properties of fenugreek grown under controlled and natural environmental conditions. Fenugreek treated with stigmasterol significantly (p < 0.001) increased the production of alkaloids, flavonoids, phenolics, saponins, and tannins, as well as antioxidants, in field grown plants compared to in vitro calli. In vivo-grown plants also showed stronger antitumor (IC50 = 0.001 μg/mL) and antidiabetic activities (IC50 < 1.0 µg/mL) upon treatment with stigmasterol. GC-MS analysis depicted an augmentation of ester acids along with phytol and 2,4-di-tert-butylphenol production in stigmasterol-treated samples. This suggests that stigmasterol effectively boosts the medicinal properties of fenugreek and could be explored for enhancing the bioactive properties of other medicinal plants.
Abd-Elrahman, W. M., 2019. Curative and hepatoprotective action of fenugreek (Trigonella foenum-garaecum) seeds against cisplatin induced oxidative liver damage in male albino rats. Egypt. J. Nutr. Health 14(2), 77-90.
Adusei, S., Otchere, J.K., Oteng, P., Mensah, R.Q., Tei-Mensah, E., 2019. Phytochemical analysis, antioxidant and metal chelating capacity of Tetrapleura tetraptera. Heliyon 5(11), 1-5.
Ain, N., Safdar, N., Yasmin, A., 2017. Antimicrobial investigations from crude and peptide extracts of Glycine max Linn. Merr varieties. Arab J. Sci. Eng. 42(1), 105-113.
Badi, H.N., Mehrafarin, A., Mustafavi, S.H., Labbafi, M., 2018. Exogenous arginine improved fenugreek sprouts growth and trigonelline production under salinity condition. Ind. Crops Prod. 122, 609-616.
Bajad, P.N., Pardeshi, A.B., Pagore, V.P., 2019. Extraction, isolation and quantification of saponin from Dodonaea viscosa JACQ. J. Pharm. Innov. 8(5), 41-44.
Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L.H., El Omari, N., Bouyahya, A., 2022. Health benefits and pharmacological properties of stigmasterol. Antioxidants 11(10), 1-10.
Bobe, G., Zhang, Z., Kopp, R., Garzotto, M., Shannon, J., Takata, Y., 2020. Phytol and its metabolites phytanic and pristanic acids for risk of cancer: Current evidence and future directions. Eur. J. Cancer Prev. 29(2), 191-200.
Chaudhary, S., Chaudhary, P.S., Chikara, S.K., Sharma, M.C., Iriti, M., 2018. Review on fenugreek (Trigonella foenum-graecum L.) and its important secondary metabolite diosgenin. Not. Bot. Horti. Agrobot. Cluj Napoca 46(1), 22-31.
Chaves, N., Santiago, A., Alías, J.C., 2020. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 9(1), 1-15.
Chelladurai, G.R.M., Chinnachamy, C., 2018. Alpha amylase and alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz. J. Pharm. Sci. 54, 1-10.
Chen, M.H., Chen, X.J., Wang, M., Lin, L.G., Wang, Y.T., 2016. Ophiopogon japonicus—A phytochemical, ethnomedicinal and pharmacological review. J. Ethnopharmacol. 181, 193-213.
Ciura, J., Szeliga, M., Tyrka, M., 2015. Optimization of in vitro culture conditions for accumulation of diosgenin by fenugreek. J. Med. Plants Stud. 3(3), 22-25.
Eraky, M.A., Aly, N.S.M., Selem, R.F., El-Kholy, A.A.E.M., Rashed, G.A.E.R., 2016. In vitro schistosomicidal activity of phytol and tegumental alterations induced in juvenile and adult stages of Schistosoma haematobium. Korean J. Parasitol. 54(4), 477-484.
Fazili, M.A., Bashir, I., Ahmad, M., Yaqoob, U., Geelani, S.N., 2022. In vitro strategies for the enhancement of secondary metabolite production in plants: A review. Bull. Natl. Res. Cent. 46(1), 1-12.
Fujimoto, T., Abe, H., Mizukubo, T., Seo, S., 2021. Phytol, a constituent of chlorophyll, induces root-knot nematode resistance in Arabidopsis via the ethylene signaling pathway. Mol. Plant Microbe Interact. 34(3), 279-285.
Hamdani, S.S., Bhat, B.A., Nissar, S., 2020. Ethnobotanical study of medicinal plants of Kashmir Valley, India having anticancer properties. Int. J. Res. Appl. Sci. Biotechnol. 7(4), 84-91.
Iranmanesh, M., Mohebbati, R., Forouzanfar, F., Roshan, M.K., Ghorbani, A., Nik, M.J., Soukhtanloo, M., 2018. In vivo and in vitro effects of ethanolic extract of Trigonella foenum-graecum L. seeds on proliferation, angiogenesis and tube formation of endothelial cells. Res. Pharm. Sci. 13(4), 343-352.
Islam, M.T., Ali, E.S., Uddin, S.J., Shaw, S., Islam, M.A., Ahmed, M.I., Billah, M.M., 2018. Phytol: A review of biomedical activities. Food Chem. Toxicol. 121, 82-94.
Jasim, B., Thomas, R., Mathew, J., Radhakrishnan, E.K., 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek (Trigonella foenum-graecum L.). Saudi Pharm. J. 25(3), 443-447.
Jurić, S., Sopko Stracenski, K., Król-Kilińska, Ż., Žutić, I., Uher, S.F., Đermić, E., Vinceković, M., 2020. The enhancement of plant secondary metabolites content in Lactuca sativaL. by encapsulated bioactive agents. Sci. Rep. 10(1), 1-12.
Keskes, H., Belhadj, S., Jlail, L., El Feki, A., Sayadi, S., Allouche, N., 2018. LC-MS-MS and GC-MS analyses of biologically active extracts of tunisian fenugreek (Trigonella foenum-graecum L.) seeds. J. Food Meas. Charact. 12, 209-220.
Khlifi, S., Jemaa, H.B., Hmad, H.B., Abaza, H., Karmous,I., Abid, A., Aouidet, A., 2016. Antioxidant, antidiabetic and antihyperlipidemic effects of Trigonella foenum-graecum seeds. Int. J. Pharmacol. 12(4), 394-400.
Khorasani Esmaeili, A., Mat Taha, R., Mohajer, S., Banisalam, B., 2015. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pretense L. (Red Clover). Biomed Res. Int. 1-11.
Khorshidian, N., Yousefi Asli, M., Arab, M., Adeli Mirzaie, A Mortazavian, A.M., 2016. Fenugreek: Potential applications as a functional food and nutraceutical. Nutr. Food Sci. 3(1), 5-16.
Kumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Oz, F., 2023. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 28(2), 1-41.
Kwon, D.Y., Kim, J.K., Un Park, S., 2019. Diosgenin biosynthesis in the sprouts of fenugreek as influenced by chitosan. Online J. Biol. Sci. 19(2), 104-109.
Lens, C., Malet, G., Cupferman, S., 2016. Antimicrobial activity of butyl acetate, ethyl acetate and isopropyl alcohol on undesirable microorganisms in cosmetic products. Int. J. Cosmet. Sci. 38(5), 476-480.
Nasir, M.N., Besson, F., 2012. Interactions of the antifungal mycosubtilin with ergosterol-containing interfacial monolayers. Biochim. Biophys. Acta Biomembr. 1818(5), 1302-1308.
Olivia, N.U., Goodness, U.C., Obinna, O.M., 2021. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J. Pharm. Sci. 7, 1-5.
Omezzine, F., Bouaziz, M., Daami-Remadi, M., Simmonds, M.S., Haouala, R., 2014. Chemical composition and antifungal activity of Trigonella foenum-graecum L. varied with plant ploidy level and developmental stage. Arab. J. Chem. 10, 3622-3631.
Pandey, S.S., Kumar, D., Tiwari, B. S., 2017. Chloroplast Metabolic Engineering for Sustainable Agriculture, in: Dubey, S.K., Pandey, A., Sangwan, R.S. (Eds), Current Developments in Biotechnology and Bioengineering: Crop Modification, Nutrition, and Food Production. Elsevier, pp.149-162.
Parchin, R.A., Ghomi, A.A.N., Badi, H.N., Navabpour, S., Mehrafarin, A., Eskandari, A., 2021. Investigation effect of ethyl methane sulfonate (EMS) on some of morphophysiological and phytochemical traits of fenugreek (Trigonella foenum-graecum L.). Ind. Crops Prod. 162, 1-6.
Perveen, S., Safdar, N., Yasmin, A., Bibi, Y., 2022. DAT and PRX1 gene expression modulates vincristine production in Catharanthus roseus L. propagates using Cu, Fe and Zn nano structures. Plant Sci. 320, 1-10.
Rampogu, S., Parameswaran, S., Lemuel, M.R., Lee, K.W., 2018. Exploring the therapeutic ability of fenugreek against type 2 diabetes and breast cancer employing molecular docking and molecular dynamics simulations. Evid. Based Complementary Altern. Med. 2018, 1-13.
Rehmat, J., Gul-e-Saba, Safdar, N., 2018. Antitumor activity of aspartame in diet coke using potato disc tumor assay. J. Pharm. Sci. Res. 10(8), 2119-2121.
Ruiz, C., Nadal, A., Foix, L., Montesinos, L., Montesinos, E., Pla, M., 2018. Diversity of plant defense elicitor peptides within the Rosaceae. BMC Genet. 19(11), 1-12.
Sadaf, H.M., Bibi, Y., Ishaque, M., Nisa, S., Qayyum, A., Safdar, N., Chung, G., 2021. Determination of ROS scavenging, antibacterial and antifungal potential of methanolic extract of Otostegia limbata (Benth.) Boiss. Plants. 10(11), 1-11.
Shanaida, M., Golembiovska, O., Hudz, N., Wieczorek, P.P., 2018. Phenolic compounds of herbal infusions obtained from some species of the Lamiaceae family. Curr. Issues Pharm. Med. Sci. 31(4), 194-199.
Sharma, M.S., Choudhary, P.R., 2017. Effect of fenugreek seeds powder (Trigonella foenum-graecum L.) on experimental induced hyperlipidemia in rabbits. J. Diet. Suppl. 14(1), 1-8.
Spicher, L., Almeida, J., Gutbrod, K., Pipitone, R., Dörmann, P., Glauser, G., Kessler, F., 2017. Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato. J. Exp. Bot. 68(21-22), 5845-5856.
Thakur, R.S., Ahirwar, B., 2019. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. J. Food Drug Anal. 27(1), 231-239.
Tyagia, T., Argawak, M., 2017. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 6(1), 195-206.
Valvi, S.R., Jadhav, V.D., Gadekar, S.S., Yesane, D.P., 2014. Assessment of bioactive compounds from five wild edible fruits, Ficus racemosa, Elaegnus conferta, Grewia tillifolia, Scleichera oleosa and Antidesma ghasembilla. Acta Biol. Indica 3(1), 549-555.
Visuvanathan, T., Than, L.T.L., Stanslas, J., Chew, S.Y., Vellasamy, S., 2022. Revisiting Trigonella foenum-graecum L.: Pharmacology and therapeutic potentialities. Plants 11(11), 1-4.
Vujčić, V., Radić Brkanac, S., Radojčić Redovniković, I., Ivanković, S., Stojković, R., Žilić, I., Radić Stojković, M., 2017. Phytochemical and bioactive potential of in vivo and in vitro grown plants of Centaurea ragusina L. Detection of DNA/RNA active compounds in plant extracts via thermal denaturation and circular dichroism. Phytochem. Anal. 28(6), 584-592.
Zhao, F., Wang, P., Lucardi, R.D., Su, Z., Li, S., 2020. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins 12(1), 1-26.