Anti-plasmodial diterpenes from the roots of Hypoestes forsskaolii (Vahl) R.Br (Acanthaceae)
محورهای موضوعی : Natural Products: Isolation and CharacterizationFred Wanyonyi Sawenja 1 , Ruth Anyango Omole 2 , Peter Gakio Kirira 3 , Hamisi Masanja Malebo 4 , Alex Kingóri Machocho 5 , Richard Maveke Musau 6 , Isalah Omolo Ndiege 7
1 - Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya; School of Chemistry and Material Science, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
2 - Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya; School of Chemistry and Material Science, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
3 - Centre for Traditional Medicine & Drug Research, Kenya Medical Research Institute (KEMRI), P.O Box 54840 Nairobi 00200, Kenya
4 - Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya; Department of Traditional Medicine Research, National Institute for Medical Research (NIMR), P.O. Box 9653, Dar es Salaam, Tanzania
5 - Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
6 - Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
7 - Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
کلید واژه: Acanthaceae, Anti-plasmodial, Diterpenes, Hypoestes forsskaolii (Vahl) R.Br., Malaria, Plasmodium falciparum D6 (CQ-sensitive), Roots,
چکیده مقاله :
Ethno-pharmacological surveys previously revealed that Hypoestes forskalei (Vahl) Sol. Roemer & Schl.(Acanthaceae), a local medicinal plant, is one of the most widely used herbs in traditional malaria therapy by the Marakwet and Kisii communities in Kenya. This study was aimed at validating the indigenous medicinal knowledge claims on the efficacy of H. forskalei and its safety as a traditional anti-malarial drug. It involved the sequential solvent extraction of plant material, bioassay-guided separation and isolation of components, identification of anti-plasmodial principles of H. forskalei and determination of their cytotoxicity and selectivity. From the roots of H. forskalei, (3, 4a, 7, 7,10a-pentamethyl-1, 3-vinyl-dodecahydro-benzo[f]chromene (1) and (3,4a,7,7,10a-pentamethyl-3-vinyl-dodecahydrobenzo[f]chromen-8-ol (2) with moderate and mild anti-plasmodial activity at IC50 2.39±0.0 µg/mL (7.81 µM) and 4.34±0.03 µg/mL or 15.0 µM), respectively, were isolated plus the inactive kaur-16-en-19-oic acid (IC50 19.75±0.11 µg/mL or 65.40 µM) against Plasmodium falciparum D6 (CQ-sensitive) strain.
Ethno-pharmacological surveys previously revealed that Hypoestes forskalei (Vahl) Sol. Roemer & Schl.(Acanthaceae), a local medicinal plant, is one of the most widely used herbs in traditional malaria therapy by the Marakwet and Kisii communities in Kenya. This study was aimed at validating the indigenous medicinal knowledge claims on the efficacy of H. forskalei and its safety as a traditional anti-malarial drug. It involved the sequential solvent extraction of plant material, bioassay-guided separation and isolation of components, identification of anti-plasmodial principles of H. forskalei and determination of their cytotoxicity and selectivity. From the roots of H. forskalei, (3, 4a, 7, 7,10a-pentamethyl-1, 3-vinyl-dodecahydro-benzo[f]chromene (1) and (3,4a,7,7,10a-pentamethyl-3-vinyl-dodecahydrobenzo[f]chromen-8-ol (2) with moderate and mild anti-plasmodial activity at IC50 2.39±0.0 µg/mL (7.81 µM) and 4.34±0.03 µg/mL or 15.0 µM), respectively, were isolated plus the inactive kaur-16-en-19-oic acid (IC50 19.75±0.11 µg/mL or 65.40 µM) against Plasmodium falciparum D6 (CQ-sensitive) strain.
Abraham, W.R., 1994. Microbial hydroxylation of scareol. Phytochemistry 36, 1421-1424.
Al Musayeib, N.M., Mothana, R.A., Mohamed, G.A., Ibrahim, S.R.M., Maes, L., 2014. Hypoestenonols A and B, new fusicoccane diterpenes from Hypoestes forskalei. Phytochem. Lett. 10, 23-27.
Algarra, J., García-Granados, A., de Buruaga, A.S., de Buruaga, J.M.S., 1983. Diterpenoids from sideritis varoi. Phytochemistry 22, 1779-1782.
Angelopoulou, D., Demetzos, C., Dimas, C., Perdetzoglou, D., Loukis, A., 2001. Essential oils and hexane extracts from leaves and fruits of Cistus monspeliensis. cytotoxic activity of ent-13-epi-manoyl oxide and its isomers. Planta Med. 67, 168-171.
Anjaneyulu, A.S.R., Rao, V.L., 2000. Five diterpenoids (agallochins A-E) from the mangrove plant Excoecaria agallocha Linn. Phytochemistry 55, 891-901.
Atanasov, A.G., Waltenberger, B., Pferschy-Wenzig, E.M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E.H., Rollinger, J.M., Schuster, D., Breuss, J.M., Bochkov, V., Mihovilovic, M.D., Kopp, B., Bauer, R., Dirsch, V.M., Stuppner, H., 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review Europe PMC Funders Group. Biotechnol. Adv. 33, 1582-1614.
Cross, B.E., Galt, R.H.B., Hanson, J.R., Curtis, P.J., Grove, J.F., Morrison, A., 1963. New metabolites of Gibberella fujikuroi. Part II. The isolation of fourteen new metabolites. Chem. Soc. 2937-2943.
De Souza, P.A., Rangel, L.P., Oigman, S.S., Elias, M.M., Ferreira-Pereira, A., De Lucas, N.C., Leitão, G.G., 2010. Isolation of two bioactive diterpenic acids from Copaifera glycycarpa oleoresin by high-speed counter-current chromatography. Phytochem. Anal. 21, 539-543.
Deletre, E., Martin, T., Duménil, C., Chandre, F., 2019. Insecticide resistance modifies mosquito response to DEET and natural repellents. Parasit. Vectors 12, 1-10.
Desjardins, R.E., Canfield, C.J., Haynes, J.D., Chulay, J.D., 1979. Quantitative activity semiautomated technique. Antimicrob. Agents Chemother. 16, 710-718.
Falara, V., Pichersky, E., Kanellis, A.K., 2010. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes. Plant Physiol. 154, 301-310.
Fraga, B.M., González, P., Guillermo, R., Hernández, M.G., Rovirosa, J., 1989. The microbiological transformation of some ent-13-epi-manoyl oxide diterpenes by Gibberella fujikuroi. Phytochemistry 28, 1851-1854.
Fraga, B.M., González, P., Hernández, M.G., Suárez, S., 1999. Formation of 2,3-seco-acids in the biotransformation of the diterpene ribenone by Gibberella fujikuroi. Tetrahedron 55, 1781-1792.
García-Granados, A., Fernández, A., Gutiérrez, M.C., Martínez, A., Quirós, R., Rivas, F., Arias, J.M., 2004. Biotransformation of ent-13-epi-manoyl oxides difunctionalized at C-3 and C-12 by filamentous fungi. Phytochemistry 65, 107-115.
Granados-Garcia, A., Martinez, A., Molina, A., Onorato, M.E., Rrco, M., Buruaga, A.S.D.E., 1985. Deterpenoids from Sidetinis varoi subspecies Cuatrecasasii: 13C NMR of ent-13-epi-manoyl oxides functionalized at C-12. Phytochemistry 24, 1789-1792.
Harvey, A.L., Edrada-Ebel, R., Quinn, R.J., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111-129.
Iain, D., 2015. The genus Hypoestes (Acanthaceae) in Angola. Kew Bull. 70, 1-10.
Kipkore, W., Wanjohi, B., Rono, H., Kigen, G., 2014. A study of the medicinal plants used by the Marakwet Community in Kenya. J. Ethnobiol. Ethnomed. 10.
Konishi, T., Azuma, M., Itoga, R., Kiyosawa, S., Fujiwara, Y., Shimada, Y., 1996. Three new labdane-type diterpenes from wood, Excoecaria agallocha. Chem. Pharm. Bull. 44, 229-231.
Kouzi, S.A., McChesney, J.D., 1990. Microbial metabolism of the diterpene sclareol: Oxidation of the A ring by Septomyxa affinis. Helv. Chim. Acta 73, 2157-2164.
Kunasol, C., Mayxay, M., Menard, D., Dondorp, A.M., Hlaing, T.M., van der Pluijm, R.W., Day, N.P.J., Suwannasin, K., Smithuis, F.M., Imwong, M., Miotto, O., Rekol, H., Sutawong, K., Tripura, R., White, N.J., Dhorda, M., Tun, K.M., 2017. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: A molecular epidemiology observational study. Lancet Infect. Dis. 17, 491-497.
Mahato, S.B., Kundu, A.P., 1994. 13C NMR spectra of pentacyclic triterpenoids-A compilation and some salient features. Phytochemistry 37, 1517-1575.
Mohammadhosseini, M., Frezza, C., Venditti, A., Mahdavi, B., 2022. An overview of the genus Aloysia Paláu (Verbenaceae): Essential oil composition, ethnobotany and biological activities. Nat. Prod. Res. 36, 5091-5107.
Mojab, F., 2012. Antimalarial natural products: a review. Avicenna J. Phytomedicine 2, 52-62.
Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63.
Mthembu, X.S., Van Heerden, F.R., Fouché, G., 2010. Antimalarial compounds from Schefflera umbellifera. S. Afr. J. Bot. 76, 82-85.
Muregi, F.W., Chhabra, S.C., Njagi, E.N.M., Lang’at-Thoruwa, C.C., Njue, W.M., Orago, A.S.S., Omar, S.A., Ndiege, I.O., 2003. In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J. Ethnopharmacol. 84, 235-239.
Nahar, L., El-Seedi, H.R., Khalifa, S.A.M., Mohammadhosseini, M., Sarker, S.D., 2021. Ruta essential oils: Composition and bioactivities, Molecules.
Newman, D.J., Cragg, G.M., Snader, K.M., 2000. The influence of natural products upon drug discovery. Nat. Prod. Rep. 17, 215-234.
Nogueira, C.R., Lopes, L.M.X., 2011. Antiplasmodial natural products. Molecules 16, 2146-2190.
Nsanzabana, C., 2019. Resistance to artemisinin combination therapies (ACTs): Do Not forget the partner drug! Trop. Med. Infect. Dis. 4, 26.
Okaiyeto, K., Oguntibeju, O.O., 2021. African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications. Int. J. Environ. Res. Public Health 18, 1-20.
Richards, S.L., Byrd, B.D., Reiskind, M.H., White, A.V., 2020. Assessing Insecticide resistance in adult mosquitoes: Perspectives on current methods. Environ. Health Insights 14.
Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science (80). 193, 673-675.