On the Independence of Jeffreys’ Prior for Truncated-Exponential Skew-Symmetric Models
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیS. Mirzadeh 1 , A. Iranmanesh 2 , E. Ormoz 3
1 - Department of Mathematics and Statistics, Mashhad Branch,
Islamic Azad University, Mashhad, Iran.
2 - Department of Mathematics and Statistics, Mashhad Branch,
Islamic Azad University, Mashhad, Iran.
3 - Department of Mathematics and Statistics, Mashhad Branch,
Islamic Azad University, Mashhad, Iran.
کلید واژه: Bayesian estimator, Posterior existence, Truncated exponential skew-logistic distributions, Simulation, Truncated-exponential skew-symmetric distributions, Jeffreys’ prior,
چکیده مقاله :
We study the independent Jeffreys' prior of the unknown location, scale and skewness parameters of truncated-exponential skew-symmetric distributions(TESSD). We show that this prior is symmetric and improper but it yields a proper posterior distribution for some densities. A simulation study using Monte Carlo methods is presented to compare the efficiency of Bayesian estimators in TESSD with Azzalinis' skew models under square error loss and Linex loss functions.
در این مقاله توزیع پیشین جفریز مستقل برای برآورد بیز پارامترهای مجهول مکان، مقیاس و چولگی در خانواده توزیع های نمایی بریده شده چوله(TESSD) مورد مطالعه قرار گرفته است. با وجود ناسره بودن توزیع پیشین، سره بودن توزیع پسین اثبات شده است. برای ارزیابی عملکرد برآوردهای بیز حاصل در مدل معرفی شده و مقایسه آن با مدل چوله آزالینی، مطالعات شبیه سازی به روش های مونت کارلو برای چند توزیع خاص از این خانواده انجام شده است. نتایج حاصله برتری برآوردهای بیز در خانواده TESSD نسبت به توزیع های چوله آزالینی را نشان می دهد.
[1] A. Azzalini, A class of distributions include the normal ones, Scandinavian Journal of Statistics 12 (1985) 171-178.
[2] A. Azzalini, Further results on a class of distributions which includes the normal ones, Statistica XLVI (1986) 199-208.
[3] A. Azzalini, A. Capitanio, Statistical applications of the multivariate skew normal distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 (1999) 579-602.
[4] A. Azzalini, A. Capitanio, Distributions generated by perturbation of symmetry with emphasis on a multivariate skew tdistribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65 (2003) 367-389. doi.org/10.1111/1467-9868.00391
[5] A. Azzalini, M. G. Genton, Robust like doi.org/10.1111/j.1751-5823.2007.00016.x
[6] M. D. E. Branco, M. G. Genton, doi:101111/j.1467.9469.2011.00779.x
[7] S. Cabras, W. Racugno, M. E. Castellanos, L. Ventura, A matching prior for the shape parameter of the skew-normal distribution, Scandinavian Journal of Statistics 39 (2012) 236-247, doi.org/10.1111/j.1467-9469.2011.0775.x
[8] A. Canale, E. C. Kenne Pagui, B. Scarpa, Bayesian modeling of university first-year students’ grades after placement test, Journal of Applied Statistics 43 (2016) 3015-3029, doi.org/10.1080/02664763.2016.1157144.
[10] J. T. A. S. Ferreira, M. F. J. Steel, A constructive representation of univariate skewed distributions, Journal of the American Statistical Association 101 (2006) 823-829. doi.org/10.1198/016214505000001212
[11] F. Ghaderinezhad, C. Ley and N. Loperfido, Bayesian Inference for Skew-Symmetric Distributions, Symmetry 12 (2020) 491-505,doi.org/10.3390/sym12040491.
[12] M. Hallin, C. Ley, Skew-symmetric distributions and Fisher information -a tale of two densities, Bernoulli 18 (2012) 747-763, doi.org/10.3150/12-BEJ346.
[13] M. C. Jones, On families of distributions with shape parameters (with discussion), International Statistical Review 83 (2015) 175-192, doi.org/10.1111/insr.12055
[14] C. Ley, Flexible modelling in statistics: past, present and future, Journal de la Socit Franaise de Statistique 156 (2015) 76-96.
[15] C. Ley, D. Paindaveine, On the singularity of multivariate skew-symmetric models, Journal of Multivariate Analysis 101 (2010) 1434-1444, doi.org/10.1016/j.jmva.2009.10.008
[16] B. Liseo, N. Loperfido, Default Bayesian analysis of the skew-normal distribution, Journal of Statistical Planning and Inference 136 (2004) 373-389.
[17] B. Liseo, N. Loperfido, A note on reference priors for the scalar skew-normal distribution, Journal of Statistical Planning and Inference 136 (2006) 373-389. doi.org/10.1016/j.jspi.2004.06.062
[19] S. Nadarajah, The skew-logistic distribution, AStA Advances in Statistical Analysis 93 (2009) 187-203, doi.org/10.1007/s10182-009-0105-6
[21] A. Pewsey, Problems of inference for Azzalini’s skewnormal distribution, Journal of applied statistics 27 (2000) 859-870, doi.org/10.1080/02664760050120542
[22] F. J. Rubio, B. Liseo, On the independence Jeffreys’ prior for skew-symmetric models, Statistics and Probability Letters 85 (2014) 91-97, doi.org/10.1016/j.spl.2013.11.012
[23] J. Wang, J. Boyer, M. G. Genton, A skew-symmetric representation of multivariate distributions, Statistica Sinica 14 (2004) 1259-1270.