A New Approach to $n$-Ary Dynamical Hypersystem
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیA. Dehghan Nezhad 1 , N. Saderi 2
1 - School of Mathematics,
Iran University of Science and Technology, Tehran, Iran.
2 - Department of Mathematics, Yazd University, Yazd, Iran.
کلید واژه: Action group, hypergroup, $n$-Ary dynamical hypersystem, Universal n-ary hyperalgebra, Hyperstructure,
چکیده مقاله :
The primary aim of this paper is to investigate useful generalizations of the classical concept of action of a hyperstructure on a non-empty set. The main goal is to develop the theory of dynamical system to the theory of $n$-ary dynamical hypersystem. We also give some principal properties of an $n$-ary dynamical hypersystem.
هدف اولیه این مقاله بررسی کلیات مفید تعمیمی از مفهوم عمل یک ابرساختار روی یک مجموعه غیر تهی است. توسعه نظریه سیستم دینامیکی به نظریه ابر سیستم دینامیکی n گانه از اهداف اصلی است. همچنین برخی خواص اصلی ابر سیستم دینامیکی n گانه مورد بررسی قرار می گیرند.
[1] P. Bonansinga, P. corsini, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci. 2 (1983) 307-312.
[2] Jan Chavalina, Commutative hypergroups in the sense of Marty, Proceeding of the Summer School, (1994), Horni Lipova, 19-30, Czech Republic.
[3] Jan Chvalina, S. H. Mayerova, A. D. Nezhad, General actions of hyperstructures and some applications, An. St. Univ. Ovidius Constanta 21 (2013) 59-82.
[4] S. D. Comer, Combinatorial aspects of relations, Algebra Universalis, 1993.
[5] S. D. Comer, Extension of polygroups by polygroups and their representations using colour schemes, Lecture notes in Math., No 1004, Univattice Theory 12 (1982) 91-103.
[6] S. D. Comer, Hyperstructures associated with character algebra and colour schemes, New Frontiers in Hyperstructures, Hadronic Press 32 (1996) 49-66.
[7] S. D. Comer, Polygroups derived from cogroups, Journal of Algebra 89 (1994) 12-23.
[8] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani Editor, 1993.
[9] P. Corsini, V. Leoreanu, Applications of hyperstructures theory, Advances in Mathematics, Kluwer Academic Publishers, 2003.
[10] B. Davvaz, Elementary topics on weak polygroups, Bull. Korean Math. Soc. 40 (2003) 418-431.
[11] B. Davvaz, Isomorphism Theorems of Polygroups, Bull. Malays. Math. Sci. Soc. 33 (2010) 385-392.
[12] B. Davvaz, Polygroup Theory and Related Systems, Department of Mathematics, Yazd University, Yazd, Iran.
[13] B. Davvaz, A. Dehghan Nezhad, Chemical examples in hypergroups, Ratio Mathematica 14 (2003) 71-74.
[14] B. Davvaz, A. Dehghan Nezhad, A. Benvidi, Chain reactions as experimental examples of ternary algebraic hyperstructures, Communications in Mathematical and in Computer Chemistry 65 (2011) 491-499.
[15] B. Davvaz, A. Dehghan Nezhad, A. Benvidi, Chemical hyperalgebra: Dismutations, Communications in Mathematical and in Computer Chemistry, (2011).
[16] B. Davvaz, Wieslaw A. Dudek, Thomas Vougiouklis, A generalization of n-ary algebraic systems, Communications in Algebra 37 (2009) 1248-1263.
[17] B. Davvaz, T. Vougiouklis, n-Ary hypergroups, Iran. J. Sci. Technol. 30 (2006) 165-174.
[18] A. Dehghan Nezhad, B. Davvaz, Universal hyperdynamical systems, Bull. Korean Math. Soc. 3 (2010) 513-526.
[19] Robert L. Denaney, An Introduction to Chaotic Dynamical Systems, Department of Mathematics, Boston University, AddisonWesley Publishing Company, 1989.
[20] A. Wieslaw Dudek, V. Vladimir Mukhin, On topological n-ary semigroups, Quasigroups and related systems 3 (1996) 73-88.
[21] M. Ghadiri, B. N. Waphare, n-ary polygroups, Iran J. Sci. Technol. Trans. A 33 (2009) 11-33.
[22] G. Gratzer, A representation theorem for multi-algebras, Arch. Math. 3 (1962) 452-456.
[23] G. E. Hansoul, A subdirect decomposition theorem for multialgebras, Algebra universalis 16 (1983) 274-281.
[24] H. Hoft, P. E. Howard, Representing multialgebras by algebras, the axiom of choice, and the axiom of dependent choice, Algebra Universalis 13 (1981) 69-77.
[25] Rabah Kellil, Ferdaous Kellil, A brief introduction to topological hypergroup, Sci. Int. (Lahore) 27 (2015) 3957-3959.
[26] John M. Lee, Introduction to Smooth Manifolds, Springer, New York, New York, 2012.
[27] V. Leoreanu-Fotea, B. Davvaz, nhypergroups and binary relations, European J. Combinatorics 29 (2008) 1207-1218.
[28] V. Leoreanu-Fotea, B. Davvaz, Roughness in n-ary hypergroups, Inform. Sci. 178 (2008) 4114-4124.
[29] V. Leoreanu-Fotea B. Davvaz, nhypergroups and binary relations, European J. Combin. 29 (2008) 1207-1218.
[30] A. Madanshekaf, A. R. Ashrafi, Generalized action of a hypergroup on a set, Italian J. Pure and Appl. math. 3 (1998) 127-135.
[31] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm 12 (1934) 45-49.
[32] J. R. Munkres, Topology, second edition, Prentice Hall, NJ, 2000.
[33] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc, 115, Palm Harber, USA, 1994.
[34] T. Vougiouklis, A new class of hyperstructures, J. Comb.nf. Syst. Sci. 20 (1995) 229-235.
[35] J. Zhan, S. Sh. Mousavi, M. Jafarpour, On hyperaction of hypergroups, U. P. B. Sci. Bull., Series A. 73 (2011) 117-128.