Using New Operational Matrix for Solving Nonlinear Fractional Integral Equations
محورهای موضوعی : مجله بین المللی ریاضیات صنعتی
1 - Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 - Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
کلید واژه: Fractional integral equations, Nonlinear integral equations, Operational matrix, Numerical methods, New basis function, Integral equations,
چکیده مقاله :
In this paper, a numerical method for solving nonlinear fractional integral equations (NFIE) is introduced. This method is based on the new basis functions (NFs) introduced in [M. Paripour and et al., Numerical solution of nonlinear Volterra Fredholm integral equations by using new basis functions, Communications in Numerical Analysis, (2013)]. Since the conventional operational matrices for fractional kernels are singular, the definition of these matrices is modified. In order to increase the accuracy of approximating integrals, the operational matrices are exactly calculated and parametrically presented. Then, the solution procedure is proposed and applied on NFIE. Furthermore, the error analysis is performed and rate of convergence is obtained. In addition, various numerical examples are provided for a wide range of fractional orders and nonlinearity of integral equations. Comparison of the results with the exact solutions and those reported in previous studies indicate the capability, salient accuracy, and superiority of the proposed method over similar ones.
در این مقاله یک روش عددی برای حل معادلات انتگرالی کسری غیر خطی (NFIE) بر اساس توابع پایه ی جدیدی که در مرجع ]16[ معرفی شده است، ارائه می گردد. ابتدا، ماتریس های عملیاتی تعمیم و بهبود داده شده تا بتواند مناسب انتگرال های کسری گردند. به کمک انتگرال گیری دقیق، ماتریس های مذکور به صورت پارامتری بدست می آیند. سپس، روش حل تشریح و بر روی معادلات انتگرالی غیر خطی اعمال می شوند. همچنین، تحلیل خطا صورت گرفته و مرتبه ی همگرایی بدست می آید. علاوه بر آن، مثال های عددی متعددی به ازای مقادیر بازه ی گسترده ای از مرتبه ی کسری بودن معادله و نیز توان جمله های غیر خطی ارائه می گردد. مقایسه ی نتایج با حل دقیق و نیز با نتایجی که در مطالعات پیشین گزارش شده اند توانایی، دقت قابل توجه و نیز برتری روش حاضر را نسبت به روش های مشابه نشان می دهد.
[1] M. A. Abdelkawy, S. S. Ezz-Eldien, A. ZM Amin, A jacobi spectral collocation scheme for solving Abel’s integral equations, Progr. Fract. Differ. Appl. 1 (2015) 1-14.
[2] P. Baratella, A nystrom interpolant for some weakly singular linear Volterra integral equations,Journal of computational and applied mathematics 231 (2009) 725-734.
[3] W. Chi-Hsu, On the generalization of block pulse operational matrices for fractional and operational calculus, Journal of the Franklin Institute 315 (1983) 91-102.
[4] T. Diogo, NB. Franco, P. Lima, High order product integration methods for a Volterra integral equation with logarithmic singular kernel, Communications on Pure and Applied Analysis 3 (2004) 217-236.
[5] T. Diogo, Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations, Journal of computational and applied mathematics 229 (2009) 363-372.
[6] T. Diogo, Pedro Lima, Super convergence of collocation methods for a class of weakly singular Volterra integral equations, Journal of Computational and Applied Mathematics 218 (2008) 307-316.
[7] E. Fathizadeh, R. Ezzati, K. Maleknejad, Hybrid rational haar wavelet and block pulse functions method for solving population growth model and Abel’s integral equations, Mathematical Problems in Engineering, 2017.
[8] MS. Hashmi, N. Khan, S. Iqbal, Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method, Computers and Mathematics with Applications 64 (2012) 1567-1574.
[9] S. Jahanshahi, E. Babolian, Delfim FM Torres and Alireza Vahidi, Solving Abel integral equations of first kind via fractional calculus, Journal of King Saud University-Science 27 (2015) 161-167.
[10] P. K. Lamm, L. Elden, Numerical solution of first-kind Volterra equations by sequential tikhonov regularization, SIAM journal on numerical analysis 34 (1997) 1432-1450.
[11] Y. Li, N. Sun, Numerical solution of fractional differential equations using the generalized block pulse operational matrix, Computers and Mathematics with Applications 62 (2011) 1046-1054.
[12] P. Lima, T. Diogo, An extrapolation method for a Volterra integral equation with weakly singular kernel, Applied Numerical Mathematics 24 (1997) 131-148.
[13] J. Ma, Y. Jiang, On a graded mesh method for a class of weakly singular Volterra integral equations, Journal of computational and applied mathematics 231 (2009) 807-814.
[14] F. Mirzaee, E. Hadadiyan, Numerical solution of Volterra Fredholm integral equations via modification of hat functions, Applied Mathematics and Computation 280 (2016) 110-123.
[15] M. Nosrati Sahlan, H. R. Marasi, F. Ghahramani, Block pulse functions approach to numerical solution of Abel’s integral equation, Cogent Mathematics 2 (2015) 1047-1059.
[16] M. Paripour, M. Kamyar, Numerical solution of nonlinear Volterra Fredholm integral equations by using new basis functions, Communications in Numerical Analysis 1 (2013) 1-12.
[17] S. Karimi Vanani, F. Soleymani, Tau approximate solution of weakly singular Volterra integral equations, Mathematical and Computer Modelling 57 (2013) 494-502.
[18] Ch. Yang, An efficient numerical method for solving Abel integral equation, Applied Mathematics and Computation 227 (2014) 656-661.
[19] H. A. Zedan, S. Sh. Tantawy, Y. M. Sayed, New solutions for system of fractional integro-differential equations and Abel’s integral equations by Chebyshev spectral method, Mathematical Problems in Engineering, 2017.
[20] L. Zhu, Y. Wang, Numerical solutions of Volterra integral equation with weakly singular kernel using SCW method, Applied Mathematics and Computation 260 (2015) 63-70