An Approximate Method for Solving Space-Time Fractional Advection-Dispersion Equation
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیE. Babolian 1 , M. Adabitabar Firozja 2 , B. Agheli 3
1 - Department of Computer Science, Kharazmi University, Tehran, Iran.
2 - Department of Mathematics, Qaemshahr Branch, Islamic Azad
University, Qaemshahr, Iran.
3 - Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
کلید واژه: Basic functions, Approximate method, Caputo derivative, Fuzzy-transform, Space-time fractional advection-dispersion,
چکیده مقاله :
In this research work, we have shown that it is possible to use fuzzy transform method (FTM) for approximate solution of space-time fractional advection-dispersion equation. In numerical methods, in order to approximate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all points in the interval.
در این کار تحقیقاتی، نشان داده شده است که می توان از روش تبدیل فازی (FTM) برای حل تقریبی معادله دیفرانسیل کسری انتقال پراکندگی (STFADE) استفاده کرد. مشتقات کسری از نوع کاپوتو در نظر گرفته شده اند. در روشهای عددی، برای تقریب یک تابع در یک بازه خاص ، فقط از تعداد محدودی از نقاط استفاده می شود. با این حال ، چیزی که تبدیل فازی را بر سایر روشها ترجیح می دهد این است که از تمام نقاط در بازه استفاده می کند. نتایج عددی بدست آمده نشان می دهد که الگوریتم پیشنهادی راه حل تقریبی بسیار خوبی ارائه می دهد.
[1] D. Baleanu, A. C. Luo, Discontinuity and Complexity in Nonlinear Physical Systems, J. T. Machado (Ed.). Springer (2014).
[2] A. D. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research 36 (2020) 1403-1412.
[3] W. Chen, Y. Shen, Approximate solution for a class of second-order ordinary differential equations by the fuzzy transform, Journal of Intelligent & Fuzzy Systems 27 (2014) 73-82.
[4] A. S. Deshpande, V. Daftardar-Gejji, Y. V. Sukale, On Hopf bifurcation in fractional dynamical systems, Chaos, Solitons & Fractals 98 (2017) 189-198.
[5] A. M. El-Sayed, S. H. Behiry, W. E. Raslan, Adomians decomposition method for solving an intermediate fractional advectiondispersion equation, Computers & Mathematics with Applications 59 (2010) 1759-1765.
[6] X. M. Gu, T. Z. Huang, C. C. Ji, B. Carpentieri, A. A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation, Journal of Scientific Computing 72 (2017) 957-985.
[7] O. Guner, A. Bekir, The Exp-function method for solving nonlinear space-time fractional differential equations in mathematical physics, Journal of the Association 6of Arab Universities for Basic and Applied Sciences 7 (2014) 57-85 .
[8] G. Hariharan, R. Rajaraman, A new coupled wavelet-based method applied to the nonlinear reaction-diffusion equation arising in mathematical chemistry, Journal of Mathematical Chemistry 51 (2013) 2386-2400.
[9] A. Khastan, I. Perfilieva, Z. Alijani, A new fuzzy approximation method to Cauchy problems by fuzzy transform, Fuzzy Sets and Systems 288 (2016) 75-95.
[10] A. Khastan, Z. Alijani, I. Perfilieva, Fuzzy transform to approximate solution of twopoint boundary value problems, Mathematical Methods in the Applied Sciences 6 (2016) 45-56.
[11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier B. V, Netherlands (2006).
[12] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis 47 (2009) 2108-2131.
[13] C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Computers & Mathematics with Applications 62 (2011) 855-875.
[14] R. L. Magin, O. Abdullah, D. Baleanu, X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, Journal of Magnetic Resonance 190 (2014) 255-270.
[15] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics 172 (2001) 65-77.
[16] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics reports 339 (2000) 1-77.
[17] C. Ming, F. Liu, L. Zheng, I. Turner, V. Anh, Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid, Computers & Mathematics with Applications 72 (2000) 2084-2097.
[18] S. Momani, Z. Odibat, Numerical solutions of the space-time fractional advectiondispersion equation, Numerical Methods for Partial Differential Equations 24 (2008) 1416-1429.
[19] A. Neamaty, M. Nategh, B. Agheli, TimeSpace Fractional Burgers’ Equation on Time Scales, Journal of Computational and Nonlinear Dynamics 12 (2017) 310-322.
[20] A. Neamaty, M. Nategh, B. Agheli, Local non-integer order dynamic problems on time scales revisited, International Journal of Dynamics and Control 14 (2000) 1-13.
[21] I. Perfilieva, Fuzzy transforms: Theory and applications, Fuzzy sets and systems 157 (2006) 993-1023.
[22] R. K. Pandey, O. P. Singh, V. K. Baranwal, An analytic algorithm for the spacetime fractional advection-dispersion equation, Computer Physics Communications 182 (2011) 1134-1144.
[23] I. Perfilieva, Fuzzy transforms in image compression and fusion, Acta Mathematica Universitatis Ostraviensis 15 (2007) 27-37.
[24] M. A. Z. Raja, R. Samar, E. S. Alaidarous, E. Shivanian, Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids, Applied Mathematical Modelling 40 (2016) 5964-5977.
[25] J. P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2, Journal of Computational and Applied Mathematics 193 (2006) 243-268.
[26] E. Scalas, The application of continuoustime random walks in finance and economics, Physica A: Statistical Mechanics and its Applications 362 (2000) 225-239.
[27] I. M. Sokolov, Models of anomalous diffusion in crowded environments, Soft Matter 8 (2012) 9043-9052.
[28] A. Suzuki, Y. Niibori, S. Fomin, V. Chugunov, T. Hashida, Prediction of reinjection effects in fault-related subsidiary structures by using fractional derivative-based mathematical models for sustainable design of geothermal reservoirs, Geothermics 57 (2015) 196-204.
[29] S. Tomasiello, An alternative use of fuzzy transform with application to a class of delay differential equations, International Journal of Computer Mathematics 5 (2016) 1-8.
[30] M. Jani, E. Babolian, S. Javadi, D. Bhatta, Banded operational matrices for Bernstein polynomials and application to the fractional advection-dispersion equation, Numerical Algorithms 75 (2017) 1041-1063.
[31] S. Javadi, E. Babolian, M. Jani, A numerical scheme for space-time fractional advectiondispersion equation, International Journal of Nonlinear Analysis and Applications 7 (2015) 331-343.
[32] V. V. Uchaikin, R. T. Sibatov, Fractional theory for transport in disordered semiconductors, Communications in Nonlinear Science and Numerical Simulation 13 (2008) 715-727.
[33] A. Yildirim, H. Koak, Homotopy perturbation method for solving the space-time fractional advection-dispersion equation, Advances in Water Resources 32 (2009) 1711-1716.
[34] X. Zhang, M. Lv, J. W. Crawford, I. M. Young, The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives, Advances in water resources 30 (2007) 1205-1217.
[35] X. Zhang, L. Liu, Y., Wu, B. Wiwatanapataphee, Nontrivial soluions for a fractional advection dispersion equation in anomalous diffusion, Applied Mathematics Letters 66 (2017) 1-8.