پیشبینی سیاست تقسیم سود با استفاده از مدلهای شبکه عصبی تک متغیره و چند متغیره
محورهای موضوعی : دانش سرمایهگذاریمحسن حمیدیان 1 , محمدباقر محمدزاده مقدم 2 , سجاد نقدی 3 , جواد اسماعیلی 4
1 - عضو هیات علمی و استادیار دانشگاه آزاد واحد تهران جنوب
2 - عضو هیات علمی دانشگاه آزاد واحد تهران جنوب
3 - دانشجوی دکترا حسابداری دانشگاه شهید بهشتی
4 - کارشناس ارشد حسابداری دانشگاه شهید بهشتی (نویسنده مسئول)
کلید واژه: سیاست تقسیم سود, شبکه عصبی تک متغیره, شبکه عصبی چند متغیره,
چکیده مقاله :
پیش بینی سود از دیرباز موردتوجه پژوهشگران بوده است. علاوه بر این یکی از مهم ترین معیارهای تصمیم گیری برای سرمایه گذاران و اعتباردهندگان پیش بینی سیاست تقسیم سود شرکتها است. در این راستا، در پژوهش حاضر با آگاهی از موفقیت نسبی مدلهای خطی و رگرسیونی در رضایت پژوهشگران در پیشبینی برخی مسائل مالی نظیر سیاست تقسیم سود و با استفاده از مدلهای تک متغیره و چند متغیره شبکه عصبی، به پیشبینی سیاست تقسیم سود در 183 شرکت پذیرفتهشده بورس اوراق بهادار تهران طی سال های 1390 تا 1394 شامل 915 سال-شرکت پرداختهایم. متغیرهای مورداستفاده در این پژوهش بر اساس الگوی پژوهش مارش و مرتون (1987) انتخاب شده است. نتایج نشان میدهد استفاده از شبکه های عصبی چندمتغیره نسبت به مدل شبکه عصبی تک متغیره، در پیشبینی سیاست تقسیم سود، قدرت پیشبینی را افزایش میدهد؛ بنابراین بر اساس نتایج پژوهش پیشنهاد میشود سهامداران، سرمایهگذاران برای پیشبینی سیاست تقسیم سود شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران از شبکههای عصبی مصنوعی چندمتغیری استفاده کنند.
The topic dividend policy is one of the most leading issues in modern corporate finance affecting the firm value. The results of linear methods and regression could not satisfy researchers in forecasting of financial issues such as dividend policy. In this paper, we present a comparative analysis of the forecasting accuracy of univariate and multivariate Artificial Neural Network using a sample of 183 companies listed in the Tehran Stock Exchange through for the years 2011_2015. This study shows that the application of the multivariate neural network model results in forecasts that are more accurate than Univariate neural network forecasting models. Our findings show that forecast of a multivariate ANN incorporating Marsh and Merton (1987) variables is more accurate than univariate ANNs. Therefore, based on the results of the study we suggest that shareholders, investors and other stakeholders use multivariate ANNs to predict dividend policy of companies listed in Tehran Stock Exchange.
_||_
* اعتمادی، حسین و انوار رستمی، علیاصغر و احمدیان، وحید (1394). ارزیابی توانایی پیشبینی سود فصلی هر سهم با استفاده از مدلهای سری زمانی و شبکه پروسپترون چندلایه. مجله مهندسی مالی و مدیریت اوراق بهادار، شماره 23، ص 21 تا 38.
* انواری رستمی، علیاصغر و آذر، عادل و نوروزی، محمد (1392). الگوسازی و پیشبینی سود هر سهم در شرکتهای پذیرفتهشده بورس اوراق بهادار تهران با رویکرد شبکه عصبی .GMDH بررسیهای حسابداری و حسابرسی، شماره 1، دوره 20، ص 1 تا 18.
* پورحیدری، امید و محمدی، امیر و رحیمی، علی رضا (1388). بررسی پایداری خطمشی تقسیم سود در شرکتهای پذیرفتهشده بورس تهران. شماره 1، ص 96 تا 111.
* خالوزاده، حمید (1377). مدلسازی غیرخطی و پیشبینی رفتار قیمت سهام در بازار بورس تهران. رساله دکتری مهندسی برق، دانشگاه تربیت مدرس، دانشکده فنی و مهندسی.
* عرب مازار یزدی، محمد و قاسمی، مهسا (1388). برآورد قیمت عرضههای عمومی اولیه با استفاده از شبکههای عصبی مصنوعی. تحقیقات حسابداری، شماره 1، ص 74 تا 96.
* فروغی، داریوش و فروغ نژاد، حیدر و میرزایی منوچهر (1382). پیشبینی سود هر سهم: ترکیب شبکههای عصبی مصنوعی و الگوریتم بهینهسازی حرکت تجمعی ذرات. دانش سرمایهگذاری، سال دوم، شماره 6، ص 63 تا 82.
* مکیان، سید نظام الدین و کریمی تکلو، سلیم (1388). پیشبینی ورشکستگی شرکتهای تولیدی با استفاده از شبکههای عصبی. فصلنامه اقتصاد مقداری، شماره 6، ص 129 تا 144.
* Al-Malkawi, Rafferty, Pillai (2010). Dividend policy: a review of theories and empirical evidence, International Bulletin of Business Administration, N 9,Pp 7-18.
* Al-Najjar, Hussainey (2009). The Association between Dividend Payout and Outside Directorships, Journal of Applied Accounting Research,N 10 (1), Pp 4-19.
* Black, F (1976). The Dividend Puzzle, The Journal of Portfolio Management, Winter, 2(2), Pp 5-8.
* Brealey, Myers (2002). Principles of Corporate Finance (McGraw-Hill, New York).
* Callen, Kwan, Yip, Yuan (1996). Neural network forecasting of quarterly accounting earnings’, International Journal of Forecasting, Vol. 12, Pp 475–482.
* Cao, Parry (2009). Neural Network Earnings per Share Forecasting Models: A Comparison of Backward Propagation and the Genetic Algorithm. Decis. Support Syst,N 47, Pp 32-41.
* Cao, Gan (2009). Forecasting EPS of Chinese Listed Companies Using Neural Network with Genetic Algorithm. Retrieved from http://works.bepress.com/qiwei_gan/1/.
* Graham, Dodd (1934). Security Analysis: Principles and Technique, New York and London: McGraw-Hill Book Company.
* Kim,Won, Bae (2010). A knowledge integration model for the prediction of corporate dividends, Expert Systems with Applications,N37(2), Pp 344-350.
* Lease, Kose, Avner, Uri Loewenstein, Oded, Sarig (2000). Dividend Policy: Its Impact on Firm Value (Harvard Business School Press, Boston, Massachusttes).
* Lintner (1956). Distribution of Incomes of Corporations Among Dividends, Retained Earnings, and Taxes, American Economic Review N 46, Pp 97-113.
* Marsh, Merton (1987). Dividend behavior for the aggregate stock 637 market. Journal of Business,N 60(1), Pp 1–40.
* Miller, Merton, Franco (1961). Dividend Policy, Growth, and the Valuation of Shares, Journal of Business,N 34, Pp 411-433.
* Moradzadehfard, Motlagh, Fathi (2011). Comparing Neural Network and Multiple Regression Models to Estimate Dividend Payout Ratio” Journal of Scientific Research,N 10 (3), Pp 302-309.
* Naveen, Daniel, Deni, Lalitha (2008). Do firms manage earnings to meet dividend thresholds. Journal of Accounting and Economics, vol. 45(1), Pp 2-26.
* Won, Kim, Bae (2012). Using genetic algorithm based knowledge refinement model for dividend policy forecasting, Expert Systems with Applications, N 39(18), Pp 472-479.
* Yokum, Armstrong (1995). Beyond accuracy: comparison of criteria used to select forecasting methods, N11(4), Pp 591–597
* Zhang, Cao, Schniederjans (2004). Neural Network Earnings per Share Forecasting Models: A Comparative Analysis of Alternative Methods, N 35(2), Pp 205-237