بررسی آزمایشگاهی حذف یون کادمیوم از محلول های آبی توسط بیو جاذب کاه گندم بهبود یافته
محورهای موضوعی : مدیریت محیط زیستابوالفضل جهانگیری 1 , الهام عامری 2
1 - دانش آموخته کارشناسی ارشد مهندسی شیمی، دانشگاه آزاد اسلامی واحد شهرضا، اصفهان، ایران.
2 - استادیار دانشگاه آزاد اسلامی واحد شهرضا، گروه مهندسی شیمی، دانشکده فنی-مهندسی، اصفهان، ایران. *(مسوول مکاتبات)
کلید واژه: کاه گندم بهبود یافته, حذف, کادمیوم, بیو جاذب,
چکیده مقاله :
زمینه و هدف: کادمیوم از جمله فلزات سنگینی است که در پساب صنایع مختلف حضور داشته و به شدت برای انسان و محیط زیست سمی می باشد. لذا کاتیون های این فلز باید از پساب حذف شود و یا تا حد مجاز تقلیل یابد. پژوهش حاضر با هدف تعیین کارایی کاه گندم بهبود یافته در حذف کادمیوم از محلول آبی طراحی و اجرا گردید. روش بررسی: در این مطالعه, جاذب کاه گندم در شرایط آزمایشگاهی آماده و با استفاده از الک های استاندارد با اندازه های مش بین ۴۰-۱۲۰ دانه بندی شد. سپس کاه گندم با استفاده از محلول هیدروکسید سدیم 7/0 مولار عامل دار گردید. جهت شناسایی گروه های عاملی در جاذب تهیه شده، آزمون اسپکتروسکوپی مادون قرمز انجام شد. فرآیند جذب به صورت ناپیوسته و در شرایط آزمایشگاهی با تأکید بر اثرات پارامترهای مختلفی چون اندازه جاذب, pH, زمان تماس, غلظت اولیه ی کادمیوم, مقدار جاذب و سرعت اختلاط بر راندمان جذب مورد بررسی قرار گرفت. یافته ها: نتایج آزمون اسپکتروسکوپی مادون قرمز، نشانه از تقویت شدید گروه هیدروکسیل و کربوکسیل در طی فرآیند بهبود جاذب بود. بهینه های هر عامل که بیشترین میزان جذب را داشتند به ترتیب مش 70, pH برابر با ۷, زمان تماس ۳۰ دقیقه, غلظت اولیه کادمیوم۲۰ میلی گرم بر لیتر, 5/1 گرم جاذب و شدت همزن 240 دور بر دقیقه در دمای ۲۵ درجه ی سانتی گراد به دست آمد. بحث و نتیجه گیری: مقدار بیشینه بازده حذف کادمیوم با کاربرد کاه گندم عامل دار شده، در شرایط بهینه 5/98 درصد حاصل شد. به طور کلی نتایج نشان داد که کاه گندم بهبود یافته به عنوان یک جاذب بلا استفاده و ارزان می تواند جهت حذف یون کادمیوم موثر واقع شود تا جایی که می توان در شرایط بهینه به بازده حذف تقریبا کامل دست یافت.
Background and Objactive: Cadmium is one of the heavy metals resulting from wastewater of different industries, and it is also highly toxic to human and the environment. So, the cations of this metal must be removed or reduced down to effluent standards. The aim of the current study was to investigate the cadmium removal efficiency by modified wheat straw from aqueous solutions. Method: In this study, wheat straw as the adsorbent was prepared in a laboratory scale and pulverized by standard ASTM sieves (40-120 mesh sizes). Consequently, wheat straw was functionalized by using NaOH solution with concentration of 0.7 M. FTIR analysis was used to characterize the functional groups in the prepared adsorbent. Adsorption process was accomplished in a batch laboratory-scale with emphasis on the effect of various parameters such as mesh size, pH, contact time, initial concentration of Cd (II), adsorbent dosage and mixing rate on the adsorption efficiency. Findings: FTIR results showed that the modification of the wealth straw brought increase of stretch vibration band of hydroxyl and carboxyl groups. Optimized values for each factor to achieve the highest uptake were found to be as follows: the mesh size of 70, the contact time of 30 minutes, the initial concentration of 20 mg/L, the pH 7, the adsorbent dose of 1.5 g and the agitation speed of 240 rpm, at 25 ° C, respectively. Discussion and Counclusion: The maximum removal efficiency of cadmium was found to be %98.5, at the optimized experimental condition. In general, results showed that the modified wheat straw as an unusable and cheap sorbent could be consider for the removal of the cadmium ion with nearly complete removal efficiency, at the optimized condition.
- J. M., Motgomery, 1985. Water treatment priciples and design, Wiley Int. Pub, The University of Michigan, 696.
- B. L., White, B. T., Stachoase, A. H., James, 2009. Magnetic Fe2O3 nanoparticles coated with poly-1-cystcine for chelation of As (II), Cu (II), (II), Ni (II), Pb (II) and Zn (II), Journal of Hazardous Material, Vol. 167, pp. 848-853.
- I., Anital, J., Bhavanath, 2005. Biosorption of heavy Metals by a marine bacterium, Marine Pollution Bulletin, Vol. 50, pp. 340-343.
- Y. T., Zhou, H. L., Nie, C. B., White, Z. Y., He, L. M., Zhu, 2009. Removal of Cu from aqueous solution by chitosan acid-coated magnetic nanoparticles modified with a-ketoglutaric acid, Journal of Colloid and Intertface Science, Vol. 330, pp. 29-37.
- A. R., Ces tari, E. F., S. Vieira, I. A., Olivevia, R. E., Bruns, 2007. The removal of Cu(II) and Co(II) from aqueous solutions using Cross-linked chitosan-Evaluation by the factorial design methodology, Journal of Hazardous Material, Vol. 143, pp. 8-16.
- J. Y., Tseng, C. Y., Chang, Y. H., Chen, C. F. ,Chan, P. C., Chiang, 2007. Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Ca(II) ion, Journal of colloid an Interface Science, Vol. 295, pp. 209-216.
- R., Ayyappan, A., Carmalinsophia, K., Swaminathan, 2005. Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes, Process Biochemistry, Vol. 40, pp. 1293-1299.
- H. A., Qdaisa, H., Moussa, 2004. Removal of heavy metal from waste water by membrane processes, Desalination, Vol. 164, pp. 105-110.
- خونساری. س، 1389، جذب یون های کبالت و سریم توسط MCM-41-48عامل دار شده با گروه آمینو سیلان"، پایان نامه ی کارشناسی ارشد، دانشگاه آزاد اسلامی واحد شهرضا.
- E. S., Abdel-Halim, S. S., Al-Deyaba, 2011. Removal of heavy metal from their aqueous solutions through adsorption onto natural polymer, Carbohydrate Polymers, Vol. 84, pp. 454-458.
- M. G., Mulgund, S. P., Dabeer, S., Dhar, V., Makani, B., Jadhav, 2011. Equilibrium uptake and column studies of Pb(II), Cu(II) and Cd(II) using waste eucalyptus charcoal Australian, Journal of Basic and Applied Sciences, Vol. 5, pp. 135-142.
- R., Cesar, L., Sergio, A., Marco, 2004. Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an online preconcentration system for cadmium and lead determination by FAAS, Microchemical Journal, Vol. 77, pp. 163-75.
- K., Upendra, B., Manas, 2006. Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresource Technology, Vol. 9, pp. 97-104.
- A., Maleki, A. H., Mahvi, R., Rezaee, A., Eslami, 2011. Isotherm and kinetics of arsenic (V) adsorption from aqueous solution using modified wheat straw”, Iranian Journal of Health and Environment, Vol. 3, pp. 439-449.
- E., Cheraghi. E., Ameri, A., Moheb, 2015. Continuous biosorption of Cd (II) ions from aqueous solutions by sesame waste: thermodynamics and fixed-bed column studies. Desalination and water treatment, Vol. xx: pp. xxx-xxx.
- E., Cheraghi. E., Ameri, A., Moheb, 2015. Adsorption of cadmium ions from aqueous solutions using sesame as a low-cost biosorbent: kinetics and equilibrium studies. International Journal of Environmental Science and Technology, Vol. xx: pp. xxx-xxx.
- Z., Azizi Haghighat, E., Ameri, 2015, Synthesis and characterization of magnetic wheat straw for lead adsorption, Desalination and Water Treatment, Vol. xx, pp. xxx-xxx.
- V. B. H., Dang, 2009. Equlibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw, Bioresource Technology، Vol. 1001, pp. 211-219.
- جمالی. ح، شامحمدی. ش، 1389، تاثیر غلظت بر راندمان و زمان تعادل جذب سرب از محیط آبی توسط جاذب پوسته شلتوک، علوم و تکنولوژی محیط زیست، شماره 12، صص 61-51.
- دیوبند. ل، برومندنسب. س، بهزاد. م. و عابدی کوپایی. ج، 1392، امکان کاربرد برگ سدر و خاکستر آن برای جداسازی کادمیم از آب به وسیله فرآیند جذب سطحی ناپیوسته، مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، شماره ۶۵، صص ۱۲۵-۱۳۷.
- M., Martinez, N., Miralles, S., Hidalgo, N., Fiol, I., Villaescusa, J., Poch, 2006. Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste, Journal of Hazardous Materials, Vol. 133, pp. 203-211.
- L. B., Lim, N., Priyantha, D., Tennakoon, M. K., Dahri, 2012. Biosorption of cadmium (II) and copper (II) ions from aqueous solution by core of Artocarpus odoratissimus, Environmental Science and Pollution Research, Vol. 19, pp. 3250-3256.
- P., Okafor, P., Okon, E., Daniel, E., Ebenso, 2012. Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions, International Journal of Electrochemistry and Science, Vol. 7, pp. 12354-12369.
- K. P., Patel, S., Tank, K. M., Patel, P., Patel, 2013. Removal of cadmium and zinc ions from aqueous solution by using two type of husks, APCBEE Procedia, Vol. 5, pp. 141-144.
- A., Hidalgo-Vázquez, R., Alfaro-Cuevas-Villanueva, L., Márquez-Benavides, R., Cortés- Martínez, 2011.Cadmium and lead removal from aqueous solutions using pine sawdust as biosorbent, Journal of Applied Sciences in Environmental Sanitation, Vol. 6, pp. 4-9.
- C., Delacote، F. O. M., Gaslain، A., Lebeau، A., Walcarius, 2009. Factors affecting the reactivity of thiol-functionalized mesoporous silica adsorbents toward mercury (II), Talanta، Vol. 79, pp. 877-886.
- محمدی ثانی. ع، تجلی. ف، علیزاده گلستانی. ح و سعید فرجی. م،1392، جذب سطحی سرب و کادمیوم توسط پوست گلابی از محلول آبی، دومین همایش ملی علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد قوچان.