بررسی عملکرد غشا الیاف توخالی نانوساختار پلیاترسولفون در تصفیه و تغلیظ آب پنیر
محورهای موضوعی : آلودگی محیط زیست (آب و فاضلاب)
1 - دانشیار گروه ترموسینتیک و کاتالیست، دانشکده مهندسی شیمی، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
2 - کارشناسی ارشد مهندسی شیمی- ترموسینتیک و کاتالیست، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
کلید واژه: فرآیند اولترافیلتراسیون, پروتئین, آب پنیر, غشا الیاف توخالی, غشا نانوساختار پلیاترسولفون,
چکیده مقاله :
زمینه و هدف: آب پنیر یک محصول جانبی صنایع لبنی در هنگام تولید پنیر است. به عنوان یک ماده خام، آب پنیر کاربردهای بسیاری در صنایع غذایی به دلیل خواص عملکردی و غذایی پروتئین ها و لاکتوز موجود در آن دارد. تکنولوژی غشایی، مخصوصاً اولترافیلتراسیون (UF)، در صنعت لبنیات برای تولید کنسانتره پروتئین آب پنیر استفاده می شود، زیرا این تکنولوژی امکان تغلیظ گزینشی پروتئین ها نسبت به باقی اجزای آب پنیر را فراهم می سازد. بر این پایه، هدف از این پژوهش تغلیظ و تصفیه آب پنیر با استفاده از غشاهای UF بوده است. روش بررسی: سه غشا الیاف توخالی نانوساختار پلی اترسولفون با مشخصات و اندازه حفرات متفاوت آزمایش شدند و اثر پارامترهای عملیاتی دما (دمای °C 43)، فشار (سه فشار bar 3، bar 2 و bar 1) و سرعت جریان عرضی خوراک بر شار جریان عبوری، پس زنی پروتئین و عبور لاکتوز بررسی و تحلیل شد. یافته ها: نتایج نشان داده با افزایش فشار، شار افزایش پیدا کرد ولی این افزایش در فشارهای پایین تر محسوس تر بوده است. علاوه بر این، با توجه به افزایش گرفتگی و کاهش بازیابی شار، فشارهای بالا مناسب تشخیص داده نشد. افزایش سرعت جریان عرضی خوراک با افزایش تلاطم و کاهش گرفتگی بر روی سطح غشا، باعث افزایش شار شد اگرچه تأثیر این پارامترها بر درصد پس زنی پروتئین و عبور لاکتوز ناچیز بود. در بهترین شرایط عملیاتی درصد بیشینه پس زنی پروتئین 01/91 % اندازه گیری شد. بحث و نتیجه گیری:نتایج نشان داد که فرآیند UF با مدول الیاف توخالی برای تغلیظ و تصفیه آب پنیر مناسب است.
Background and Objective: Whey is a by-product of dairy industries along cheese production. As a raw material, whey has several applications in food industries and its valuable protein and lactose contents. Membrane technology, more specifically ultrafiltration (UF), is being used in dairy industry to produce whey protein concentrate (WPC) because this technology allows selective separation of whey proteins compared to the rest of its components. In this regard, the objective of this research was to investigate the effects of different operating parameter on whey protein concentration and purification process using ultrafiltration membranes. Method: Three different nanostructure Poly-Eether-Sulfone (PES) hollow fiber membranes were tested and the effects of operating parameters, temperature (43 oC), three different pressures (1 bar, 2 bar, 3 bar) and feed flow rate on the permeate flow rate, protein rejection and lactose permeation were studied. Findings: Results showed that pressure increase enhances the permeation flow rate which is more sensible at lower pressures. Moreover, high pressures have not been considered suitable considering higher fouling and lower flux recovery. Increasing feed flow rate resulted in higher turbulence on the surface of the membrane and reduces the membrane fouling and enhances the permeation flow rate even though these parameters (pressure and feed flow rate) did not have any significant effect on the protein rejection and lactose permeation. At the best operating conditions, maximum protein rejection was %91.01. Discussion and Conclusion: considering the findings, it can be concluded that UF process using PES hollow fiber membrane is capable of performing desired separation and purification of whey.
1. Yorgun, M.S., Balcioglu, I.A., & Saygin, O. (2008). Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination, Vol. 229, pp. 204-216.
2. Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. CRC Press.
3. Goulas G. and Grandison A. (2008), Applications of membrane separation. in advanced dairy science and technology, Blackwell Publishing. pp. 35-75.
4. Li, Y., & Chung, T.S. (2008). Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation. Journal of Membrane Science, Vol. 309, pp. 45-55.
5. Rektor, A., & Vatai, G. (2004). Membrane filtration of Mozzarella whey. Desalination, Vol. 162, pp. 279-286.
6. Baldasso, C., Barros, T.C., & Tessaro, I.C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, Vol. 278, pp. 381-386.
7. Chollangi, A., & Hossain, M.M. (2007). Separation of proteins and lactose from dairy wastewater. Chemical Engineering and Processing: Process Intensification, Vol. 46, pp. 398-404.
8. She, Q., Tang, C.Y., Wang, Y.N., & Zhang, Z. (2009). The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination, Vol. 249, pp. 1079-1087.
9. Sangita Bhattacharjee, C.B. (2006), Studies on the fractionation of ᵝ-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography, Journal of Membrane Science, Vol. 275, pp. 141–150.
10. Cheang, B., & Zydney, A.L. (2004). A two-stage ultrafiltration process for fractionation of whey protein isolate. Journal of Membrane Science, Vol. 231, pp. 159-167.
11. de Souza, R.R., Bergamasco, R., da Costa, S.C., Feng, X., Faria, S.H.B., & Gimenes, M.L. (2010). Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, Vol. 49, pp. 1137-1143.
12. Arunkumar A. & Etzel M.R., (2013), Fractionation of a-lactalbumin from b-lactoglobulin using positively charged tangential flow ultrafiltration membranes. Journal of Separation and Purification Technology, Vol. 105, pp. 121–128.
13. Sarkar, P., Ghosh, S., Dutta, S., Sen, D., & Bhattacharjee, C. (2009). Effect of different operating parameters on the recovery of proteins from casein whey using a rotating disc membrane ultrafiltration cell. Desalination, Vol. 249, pp. 5-11.
14. Porter, M. (1990). Handbook of industrial membrane technology. William Andrew.
15. Akbache A., Lamiot É., Moroni O., Turgeon S., Gauthier S., Pouliot Y. (2009), Use of membrane processing to concentrate TGF-B2 and IGF-I from bovine milk and whey. Journal of Membrane Science, Vol. 326, pp. 435–440.
16. Zhao, C., Xue, J., Ran, F., & Sun, S. (2013). Modification of polyethersulfone membranes–a review of methods. Progress in Materials Science, Vol. 58, pp. 76-150.
17. Yuliwati, E., & Ismail, A.F. (2011). Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination, Vol. 273, pp. 226-234.
18. Yuliwati, E., Ismail, A.F., Matsuura, T., Kassim, M.A., & Abdullah, M.S. (2011). Effect of modified PVDF hollow fiber submerged ultrafiltration membrane for refinery wastewater treatment. Desalination, Vol. 283, pp. 214-220.
19. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, Vol. 72, pp. 248-254.
20. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, Vol. 28, pp. 350-356.
21. Vankelecom, I.F.J. and Gevers, L.E.M. (2005), Membrane processes in green separation processes, Wiley-VCH Verlag GmbH, 251-289.
22. Askew, C.E., Poele, S.T., Skou, F., (2008). Membrane filtration in cleaning-in-place: dairy, food and beverage operations. Blackwell Publishing. Third ed., pp. 195-222.
23. Ramachandra Rao, H.G. (2002). Mechanisms of flux decline during ultrafiltration of dairy products and influence of pH on flux rates of whey and buttermilk. Desalination, Vol. 144, pp. 319-324.
24. Li, Q., Lin, H.H., & Wang, X.L. (2014). Preparation of sulfobetaine-grafted PVDF hollow fiber membranes with a stably anti-protein-fouling performance. Membranes, Vol. 4, pp. 181-199.
25. Narong, P., & James, A.E. (2008). Efficiency of ultrafiltration in the separation of whey suspensions using a tubular zirconia membrane. Desalination, Vol. 219, pp. 348-357.
26. Carić, M.Đ., Milanović, S.D., Krstić, D.M., & Tekić, M.N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, Vol. 165, pp. 83-88.
27. Atra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. (2005). Investigation of ultra-and nanofiltration for utilization of whey protein and lactose. Journal of Food Engineering, Vol. 67, pp. 325-332.
28. Chiang, B.H., & Cheryan, M. (1986). Ultrafiltration of skim milk in hollow fibers. Journal of Food Science, Vol. 51, pp. 340-344.
29. Breslau, B.R., & Kilcullen, B.M. (1977). Hollow fiber ultrafiltration of cottage cheese whey: Performance study. Journal of dairy science, Vol. 60, pp. 1379-1386.
_||_
1. Yorgun, M.S., Balcioglu, I.A., & Saygin, O. (2008). Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination, Vol. 229, pp. 204-216.
2. Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. CRC Press.
3. Goulas G. and Grandison A. (2008), Applications of membrane separation. in advanced dairy science and technology, Blackwell Publishing. pp. 35-75.
4. Li, Y., & Chung, T.S. (2008). Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation. Journal of Membrane Science, Vol. 309, pp. 45-55.
5. Rektor, A., & Vatai, G. (2004). Membrane filtration of Mozzarella whey. Desalination, Vol. 162, pp. 279-286.
6. Baldasso, C., Barros, T.C., & Tessaro, I.C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, Vol. 278, pp. 381-386.
7. Chollangi, A., & Hossain, M.M. (2007). Separation of proteins and lactose from dairy wastewater. Chemical Engineering and Processing: Process Intensification, Vol. 46, pp. 398-404.
8. She, Q., Tang, C.Y., Wang, Y.N., & Zhang, Z. (2009). The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination, Vol. 249, pp. 1079-1087.
9. Sangita Bhattacharjee, C.B. (2006), Studies on the fractionation of ᵝ-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography, Journal of Membrane Science, Vol. 275, pp. 141–150.
10. Cheang, B., & Zydney, A.L. (2004). A two-stage ultrafiltration process for fractionation of whey protein isolate. Journal of Membrane Science, Vol. 231, pp. 159-167.
11. de Souza, R.R., Bergamasco, R., da Costa, S.C., Feng, X., Faria, S.H.B., & Gimenes, M.L. (2010). Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, Vol. 49, pp. 1137-1143.
12. Arunkumar A. & Etzel M.R., (2013), Fractionation of a-lactalbumin from b-lactoglobulin using positively charged tangential flow ultrafiltration membranes. Journal of Separation and Purification Technology, Vol. 105, pp. 121–128.
13. Sarkar, P., Ghosh, S., Dutta, S., Sen, D., & Bhattacharjee, C. (2009). Effect of different operating parameters on the recovery of proteins from casein whey using a rotating disc membrane ultrafiltration cell. Desalination, Vol. 249, pp. 5-11.
14. Porter, M. (1990). Handbook of industrial membrane technology. William Andrew.
15. Akbache A., Lamiot É., Moroni O., Turgeon S., Gauthier S., Pouliot Y. (2009), Use of membrane processing to concentrate TGF-B2 and IGF-I from bovine milk and whey. Journal of Membrane Science, Vol. 326, pp. 435–440.
16. Zhao, C., Xue, J., Ran, F., & Sun, S. (2013). Modification of polyethersulfone membranes–a review of methods. Progress in Materials Science, Vol. 58, pp. 76-150.
17. Yuliwati, E., & Ismail, A.F. (2011). Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination, Vol. 273, pp. 226-234.
18. Yuliwati, E., Ismail, A.F., Matsuura, T., Kassim, M.A., & Abdullah, M.S. (2011). Effect of modified PVDF hollow fiber submerged ultrafiltration membrane for refinery wastewater treatment. Desalination, Vol. 283, pp. 214-220.
19. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, Vol. 72, pp. 248-254.
20. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, Vol. 28, pp. 350-356.
21. Vankelecom, I.F.J. and Gevers, L.E.M. (2005), Membrane processes in green separation processes, Wiley-VCH Verlag GmbH, 251-289.
22. Askew, C.E., Poele, S.T., Skou, F., (2008). Membrane filtration in cleaning-in-place: dairy, food and beverage operations. Blackwell Publishing. Third ed., pp. 195-222.
23. Ramachandra Rao, H.G. (2002). Mechanisms of flux decline during ultrafiltration of dairy products and influence of pH on flux rates of whey and buttermilk. Desalination, Vol. 144, pp. 319-324.
24. Li, Q., Lin, H.H., & Wang, X.L. (2014). Preparation of sulfobetaine-grafted PVDF hollow fiber membranes with a stably anti-protein-fouling performance. Membranes, Vol. 4, pp. 181-199.
25. Narong, P., & James, A.E. (2008). Efficiency of ultrafiltration in the separation of whey suspensions using a tubular zirconia membrane. Desalination, Vol. 219, pp. 348-357.
26. Carić, M.Đ., Milanović, S.D., Krstić, D.M., & Tekić, M.N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, Vol. 165, pp. 83-88.
27. Atra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. (2005). Investigation of ultra-and nanofiltration for utilization of whey protein and lactose. Journal of Food Engineering, Vol. 67, pp. 325-332.
28. Chiang, B.H., & Cheryan, M. (1986). Ultrafiltration of skim milk in hollow fibers. Journal of Food Science, Vol. 51, pp. 340-344.
29. Breslau, B.R., & Kilcullen, B.M. (1977). Hollow fiber ultrafiltration of cottage cheese whey: Performance study. Journal of dairy science, Vol. 60, pp. 1379-1386.