پیش بینی نتایج اجرای راهبرد های کنترل آلودگی هوا با استفاده از مدل سازی مکانی شبکه عصبی برای کلان شهرتهران
محورهای موضوعی : آلودگی هوامهران قدوسی 1 , فریده عتابی 2 , جعفر نوری 3 , علیرضا قراگزلو 4
1 - دکترای مدیریت محیط زیست، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
2 - دانشیار گروه مهندسی محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. *(مسوول مکاتبات)
3 - استاد دانشکده بهداشت و علوم پزشکی، دانشگاه تهران، تهران، ایران
4 - دانشیار گروه GIS، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: مدل شبکه عصبی مکانی, سیستمهای پشتیبان تصمیمگیری, آلودگی هوا, استراتژی های کنترل آلودگی هوا,
چکیده مقاله :
زمینه و هدف : پیش بینی نتایج حاصل از اجرای خط مشی های راهبردی کنترل آلودگی هوا به عنوان نخستین و مهم ترین چالش شهرداری تهران مطرح می باشد. هدف اصلی این تحقیق بررسی روشی خاص برای ارزیابی نتایج حاصل از خط مشی های راهبردی کنترل کننده آلودگی هوا در کلان شهر تهران با استفاده از ابزارهای پشتیبان تصمیم گیری چند بعدی بوده است . روشبررسی : ابتدا مناسب ترین استراتژی های کنترل آلودگی هوا بر اساس شرایط و ساختارهای موجود در هر زون از سطح شهر انتخاب گردید و سپس طبق معیارهای برگزیده وزن دهی شدند . همچنین بر اساس پایش مکانی الگوهای شکل گیری آلودگی هوا در زمان گذشته و حال حاضر، و نیز تحلیل اثرات آن ها، نتایج حاصل از اجرای استراتژی های کنترل آلودگی هوا توسط مدل های شبکه عصبی مکانی شبیه سازی شدند . در گام بعدی متغیرهای سری های زمانی و عدم قطعیت جهت پیش بینی الگوهای قابل شکل گیری، میزان آلودگی هوا را شبیه سازی نموده و در نهایت نتایج استراتژی های کنترل آلودگی با استفاده از لایه های موضوعی مکانی مورد ارزیابی قرار گرفت. یافتهها : تعریف خوشه های نهایی استراتژی های کنترل کیفیت هوا، وزن دهی و رتبه بندی خط مشی های منتخب بر اساس معیارهای تعریف شده از نخستین یافته های این تحقیق بوده است. همچنین استحصال پهنه بندی های سری های زمانی بر اساس داده های جمع آوری شده در طی یک دوره چهار ساله و نیز شبیه سازی مدل های سناریو مبنا و لایه های اطلاعات مکانی خروجی آن ها از جمله دست آوردهای این مطالعه بوده است. در نهایت مدلسازی متغیرهای پیش بینی و تدوین نرم افزار کنترل کیفیت هوا و پیش بینی نتایج حاصل از اجرای استراتژی های کنترل آلودگی هوا ارائه گردید. نتایج نشان دهنده آن است که در صورت بهره گیری از مدل های شبکه عصبی مکانی، مدیران شهری قادر خواهند بود به صورت موثر نتایج حاصل از اجرای استراتژی های کنترلی را پیش بینی نمایند . بحث و نتیجه گیری : نتایج این مطالعه نشان داد کهتحلیهای مکان - زمان محور، پشتیبان فرایند ارزیابی و پیش بینی اثرات آلودگی بوده و با استفاده از آن ها می توان بهترین استراتژی های کنترل آلودگی را برای پهنه های متاثر از آلودگی هوا تعریف نمود. نتایج نهایی مدل های شبکه عصبی مکانی نشان می دهد که در صورت اجرای استراتژی های منتخب بر اساس سناریوهای تعریف شده، در "سناریو خوش بینانه" کیفیت هوا در تمامی پهنه های شهر تهران به صورت کامل و پایدار، سالم باقی مانده در حالی که در "سناریو شرایط متعارف" در صورت اجرای استراتژی های منتخب تا حدود 70 در صد از سطح آلودگی هوا در فصول پاییز و زمستان نسبت به شرایط عدم اجرای برنامه های کنترلی کاسته خواهد شد. دیاگرام نهایی فرایند صحت سنجی مدل نیز موید آن بود که الگوی سطح آلودگی پیش بینی شده توسط مدل در هر یک از پهنه های شهری از روند و تطابق مناسبی در مقایسه با الگوی میزان آلودگی حاصل از نتایج داده های میدانی برخوردار بود.
Background and Objective: Predicting the results of the implementation of strategic air pollution control policies is the first and most important challenge for Tehran municipality. The main objective of this study was to define a specific method for assessing the result of urban air pollution controlling strategies in Tehran metropolis using a multi-dimensional decision support system. Method: First, the most appropriate air pollution control strategies were selected based on existing conditions and structures in each zone of the city and then weighed according to selected criteria. Based on the spatial monitoring of air pollution formation patterns in the past and present time, as well as the analysis of their effects, the results of implementing air pollution control strategies were simulated using Geo-Artificial Neural Network models. In the next step, variables of time series and uncertainty variables were simulated for predicting the potential future air pollution patterns and finally, the results of the defined control strategies were evaluated based on spatial thematic layers. Findings: Definition of final clusters of air quality control strategies, weighting and ranking of the selected policies based on defined criteria have been the first findings of this research. Also, extraction of time series zoning based on the data collected during a four-year period, as well as simulation of the baseline scenario models and spatial data layers of their output were among the achievements of this study. Finally, the modeling of the predictive variables, design of the air quality control software and the prediction of the results of the the implementation of air pollution control strategies were presented. The results showed that by applying the Geo-Artificial Neural Network models (GANN), the urban managers could effectively predict the results of implementing the air pollution control strategies. Discussion and Conclusion: The results of this study showed that the spatio-temporal analysis supports the process of evaluation and prediction of the effects of pollution and can be used to determine the best pollution control strategies for the zones affected by air pollution. The final results of GANN models indicate that if the selected strategies are implemented based on the scenarios defined, in the "optimistic scenario", air quality in all areas of Tehran is completely stable and remains healthy, while in the "ordinary scenario" will reduce the level of air pollution up to 70 percent in the autumn and winter season if the selected strategies are implemented compared to the lack of implementation of control plans. The final model of the verification process model also confirmed that the pattern of pollution predicted by the model in each of the urban areas had a proper trend and adaptation compared to the pattern of contamination obtained from the actual results of the field data.
- Cofała, J., Amann, M., Asman, W., Bertok, I., Heyes, C., Hoeglund, I.L., Schoepp, W. & Wagner, F., 2010. Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Environmental Protection, Vol. 36, No.1, pp. 29-39.
- Zhu, Y.G., 2012, Environmental impacts of rapid urbanization in China: a showcase of recent research developments. Environment Science and Pollution Research, Vol. 19, pp.41-51.
- Kobus D., Kostrzewa J., 2015. The use of spatial data processing tools for air quality assessments – practical examples, Air Quality Monitoring Department, Institute of Environmental Protection – National Research Institute (IOS-PIB), Information Systems in Management, Vol. 4, pp. 251-263.
- Ahmadi A., Abbaspour M., Arjmandi R., Abedi Z., 2015. Air Quality Risk Index (AQRI) and its application for a megacity, International Journal of Environmental Science and Technology, pp. 1-14.
- Atlas of Tehran Metropolis, 2012. Tehran Municipality, ICT organization, Tehran, Iran.
- Syp A., Faber A., Borzęcka-Walker M., Osuch D., 2015. Assessment of Greenhouse Gas Emissions in Winter Wheat Farms Using Data Envelopment Analysis Approach, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp. 2197-2203.
- 7. Peckham, S., Grell, G., McKeen, S., Fast, J., Gustafson, W., Ghan, S., et al., 2010. Characterization of urban air quality using GIS as a management system. Environmental pollution, Vol.122, No.1, pp.15-17.
- 8. Hajek, P., Olej. V., 2011. Air Quality Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networks, System Engineering and Informatics coference, Czech.
- Elbir, T., Mangir N., Kara M., Simsir S., Eren T., Ozdemir S., 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, Vol. 44, No.4, pp. 441- 454.
- Nyerges T., Roderick M., Prager S., Bennett D., Lam N., 2014. Foundations of sustainability information representation theory: spatial–temporal dynamics of sustainable systems, International Journal of Geographical Information Science, 28:5, pp. 1165-1185.
- Nejadkoork F., Nicholson K., 2012. Integrating passive sampling and interpolation techniques to assess the spatio-temporal variability of urban pollutants using limited data sets, Environmental Engineering and Management Journal, Vol.11, No. 9, pp. 1649-1655.
- Wotawa F., Rodriguez-Roda I., Comas J., 2010. Environmental decision support systems based on models and model-based reasoning, Environmental Engineering and Management Journal, Vol. 9, No.2, pp. 189-195.
- Wallenius, J. D., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K., 2008. Multiple criteria decision making, multi attribute utility theory: Recent accomplishments and what lies ahead. Management Science, Vol. 54, No.7, pp. 1336–1349.
- Elbir, T., N. Mangir, M. Kara, S. Simsir, T. Eren, S. Ozdemir, 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, 44(4), pp. 441- 346.
- Younsi Z., Hamdadou D., Bouamrane K., 2010. Integration of GIS and Artificial Neural Networks Faculty of Sciences, International Federation of Surveyors (FIG), DK-1780, Copenhagen, Denmark.
- Jiménez E., Tapiador F. J., Sáez-Martínez F., 2015. Atmospheric pollutants in a changing environment, Environment Science and Pollution Research, Vol, 22. pp: 4789–4792.
- Kanevski. Mikhail, 2011. Advanced Mapping of Environmental Data, Geo statistics, Machine Learning and Bayesian Maximum Entropy, UK.
- Jank R., Kellerov D., Schieber B., 2015. Spatial and Temporal Variations in O3 Concentrations in Western Carpathian Rural Mountain Environments, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp: 2003-2008.
- Ghodousi M., Atabi F., Nouri J., Gharagozlu A., 2016. Air Quality Management in Tehran Metropolis Using a Multi-Dimensional Decision Support System, Polish Journal of Environmental Studies, Vol. 25, No. 6, pp: 1-11.
- Ghodousi, M., Atabi, F., Nouri, J., 12-13 Jan 2016, "Multi-dimensional decision support system for air pollution management in Tehran", Fourth National Conference on Air and Noise Pollution Control, Tehran, Iran (in Persian).
_||_
- Cofała, J., Amann, M., Asman, W., Bertok, I., Heyes, C., Hoeglund, I.L., Schoepp, W. & Wagner, F., 2010. Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Environmental Protection, Vol. 36, No.1, pp. 29-39.
- Zhu, Y.G., 2012, Environmental impacts of rapid urbanization in China: a showcase of recent research developments. Environment Science and Pollution Research, Vol. 19, pp.41-51.
- Kobus D., Kostrzewa J., 2015. The use of spatial data processing tools for air quality assessments – practical examples, Air Quality Monitoring Department, Institute of Environmental Protection – National Research Institute (IOS-PIB), Information Systems in Management, Vol. 4, pp. 251-263.
- Ahmadi A., Abbaspour M., Arjmandi R., Abedi Z., 2015. Air Quality Risk Index (AQRI) and its application for a megacity, International Journal of Environmental Science and Technology, pp. 1-14.
- Atlas of Tehran Metropolis, 2012. Tehran Municipality, ICT organization, Tehran, Iran.
- Syp A., Faber A., Borzęcka-Walker M., Osuch D., 2015. Assessment of Greenhouse Gas Emissions in Winter Wheat Farms Using Data Envelopment Analysis Approach, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp. 2197-2203.
- 7. Peckham, S., Grell, G., McKeen, S., Fast, J., Gustafson, W., Ghan, S., et al., 2010. Characterization of urban air quality using GIS as a management system. Environmental pollution, Vol.122, No.1, pp.15-17.
- 8. Hajek, P., Olej. V., 2011. Air Quality Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networks, System Engineering and Informatics coference, Czech.
- Elbir, T., Mangir N., Kara M., Simsir S., Eren T., Ozdemir S., 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, Vol. 44, No.4, pp. 441- 454.
- Nyerges T., Roderick M., Prager S., Bennett D., Lam N., 2014. Foundations of sustainability information representation theory: spatial–temporal dynamics of sustainable systems, International Journal of Geographical Information Science, 28:5, pp. 1165-1185.
- Nejadkoork F., Nicholson K., 2012. Integrating passive sampling and interpolation techniques to assess the spatio-temporal variability of urban pollutants using limited data sets, Environmental Engineering and Management Journal, Vol.11, No. 9, pp. 1649-1655.
- Wotawa F., Rodriguez-Roda I., Comas J., 2010. Environmental decision support systems based on models and model-based reasoning, Environmental Engineering and Management Journal, Vol. 9, No.2, pp. 189-195.
- Wallenius, J. D., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K., 2008. Multiple criteria decision making, multi attribute utility theory: Recent accomplishments and what lies ahead. Management Science, Vol. 54, No.7, pp. 1336–1349.
- Elbir, T., N. Mangir, M. Kara, S. Simsir, T. Eren, S. Ozdemir, 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, 44(4), pp. 441- 346.
- Younsi Z., Hamdadou D., Bouamrane K., 2010. Integration of GIS and Artificial Neural Networks Faculty of Sciences, International Federation of Surveyors (FIG), DK-1780, Copenhagen, Denmark.
- Jiménez E., Tapiador F. J., Sáez-Martínez F., 2015. Atmospheric pollutants in a changing environment, Environment Science and Pollution Research, Vol, 22. pp: 4789–4792.
- Kanevski. Mikhail, 2011. Advanced Mapping of Environmental Data, Geo statistics, Machine Learning and Bayesian Maximum Entropy, UK.
- Jank R., Kellerov D., Schieber B., 2015. Spatial and Temporal Variations in O3 Concentrations in Western Carpathian Rural Mountain Environments, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp: 2003-2008.
- Ghodousi M., Atabi F., Nouri J., Gharagozlu A., 2016. Air Quality Management in Tehran Metropolis Using a Multi-Dimensional Decision Support System, Polish Journal of Environmental Studies, Vol. 25, No. 6, pp: 1-11.
- Ghodousi, M., Atabi, F., Nouri, J., 12-13 Jan 2016, "Multi-dimensional decision support system for air pollution management in Tehran", Fourth National Conference on Air and Noise Pollution Control, Tehran, Iran (in Persian).