پیش بینی نتایج اجرای راهبرد های کنترل آلودگی هوا با استفاده از مدل سازی مکانی شبکه عصبی برای کلان شهرتهران
الموضوعات :مهران قدوسی 1 , فریده عتابی 2 , جعفر نوری 3 , علیرضا قراگزلو 4
1 - دکترای مدیریت محیط زیست، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
2 - دانشیار گروه مهندسی محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. *(مسوول مکاتبات)
3 - استاد دانشکده بهداشت و علوم پزشکی، دانشگاه تهران، تهران، ایران
4 - دانشیار گروه GIS، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
الکلمات المفتاحية: مدل شبکه عصبی مکانی, سیستمهای پشتیبان تصمیمگیری, آلودگی هوا, استراتژی های کنترل آلودگی هوا,
ملخص المقالة :
زمینه و هدف : پیش بینی نتایج حاصل از اجرای خط مشی های راهبردی کنترل آلودگی هوا به عنوان نخستین و مهم ترین چالش شهرداری تهران مطرح می باشد. هدف اصلی این تحقیق بررسی روشی خاص برای ارزیابی نتایج حاصل از خط مشی های راهبردی کنترل کننده آلودگی هوا در کلان شهر تهران با استفاده از ابزارهای پشتیبان تصمیم گیری چند بعدی بوده است . روشبررسی : ابتدا مناسب ترین استراتژی های کنترل آلودگی هوا بر اساس شرایط و ساختارهای موجود در هر زون از سطح شهر انتخاب گردید و سپس طبق معیارهای برگزیده وزن دهی شدند . همچنین بر اساس پایش مکانی الگوهای شکل گیری آلودگی هوا در زمان گذشته و حال حاضر، و نیز تحلیل اثرات آن ها، نتایج حاصل از اجرای استراتژی های کنترل آلودگی هوا توسط مدل های شبکه عصبی مکانی شبیه سازی شدند . در گام بعدی متغیرهای سری های زمانی و عدم قطعیت جهت پیش بینی الگوهای قابل شکل گیری، میزان آلودگی هوا را شبیه سازی نموده و در نهایت نتایج استراتژی های کنترل آلودگی با استفاده از لایه های موضوعی مکانی مورد ارزیابی قرار گرفت. یافتهها : تعریف خوشه های نهایی استراتژی های کنترل کیفیت هوا، وزن دهی و رتبه بندی خط مشی های منتخب بر اساس معیارهای تعریف شده از نخستین یافته های این تحقیق بوده است. همچنین استحصال پهنه بندی های سری های زمانی بر اساس داده های جمع آوری شده در طی یک دوره چهار ساله و نیز شبیه سازی مدل های سناریو مبنا و لایه های اطلاعات مکانی خروجی آن ها از جمله دست آوردهای این مطالعه بوده است. در نهایت مدلسازی متغیرهای پیش بینی و تدوین نرم افزار کنترل کیفیت هوا و پیش بینی نتایج حاصل از اجرای استراتژی های کنترل آلودگی هوا ارائه گردید. نتایج نشان دهنده آن است که در صورت بهره گیری از مدل های شبکه عصبی مکانی، مدیران شهری قادر خواهند بود به صورت موثر نتایج حاصل از اجرای استراتژی های کنترلی را پیش بینی نمایند . بحث و نتیجه گیری : نتایج این مطالعه نشان داد کهتحلیهای مکان - زمان محور، پشتیبان فرایند ارزیابی و پیش بینی اثرات آلودگی بوده و با استفاده از آن ها می توان بهترین استراتژی های کنترل آلودگی را برای پهنه های متاثر از آلودگی هوا تعریف نمود. نتایج نهایی مدل های شبکه عصبی مکانی نشان می دهد که در صورت اجرای استراتژی های منتخب بر اساس سناریوهای تعریف شده، در "سناریو خوش بینانه" کیفیت هوا در تمامی پهنه های شهر تهران به صورت کامل و پایدار، سالم باقی مانده در حالی که در "سناریو شرایط متعارف" در صورت اجرای استراتژی های منتخب تا حدود 70 در صد از سطح آلودگی هوا در فصول پاییز و زمستان نسبت به شرایط عدم اجرای برنامه های کنترلی کاسته خواهد شد. دیاگرام نهایی فرایند صحت سنجی مدل نیز موید آن بود که الگوی سطح آلودگی پیش بینی شده توسط مدل در هر یک از پهنه های شهری از روند و تطابق مناسبی در مقایسه با الگوی میزان آلودگی حاصل از نتایج داده های میدانی برخوردار بود.
- Cofała, J., Amann, M., Asman, W., Bertok, I., Heyes, C., Hoeglund, I.L., Schoepp, W. & Wagner, F., 2010. Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Environmental Protection, Vol. 36, No.1, pp. 29-39.
- Zhu, Y.G., 2012, Environmental impacts of rapid urbanization in China: a showcase of recent research developments. Environment Science and Pollution Research, Vol. 19, pp.41-51.
- Kobus D., Kostrzewa J., 2015. The use of spatial data processing tools for air quality assessments – practical examples, Air Quality Monitoring Department, Institute of Environmental Protection – National Research Institute (IOS-PIB), Information Systems in Management, Vol. 4, pp. 251-263.
- Ahmadi A., Abbaspour M., Arjmandi R., Abedi Z., 2015. Air Quality Risk Index (AQRI) and its application for a megacity, International Journal of Environmental Science and Technology, pp. 1-14.
- Atlas of Tehran Metropolis, 2012. Tehran Municipality, ICT organization, Tehran, Iran.
- Syp A., Faber A., Borzęcka-Walker M., Osuch D., 2015. Assessment of Greenhouse Gas Emissions in Winter Wheat Farms Using Data Envelopment Analysis Approach, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp. 2197-2203.
- 7. Peckham, S., Grell, G., McKeen, S., Fast, J., Gustafson, W., Ghan, S., et al., 2010. Characterization of urban air quality using GIS as a management system. Environmental pollution, Vol.122, No.1, pp.15-17.
- 8. Hajek, P., Olej. V., 2011. Air Quality Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networks, System Engineering and Informatics coference, Czech.
- Elbir, T., Mangir N., Kara M., Simsir S., Eren T., Ozdemir S., 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, Vol. 44, No.4, pp. 441- 454.
- Nyerges T., Roderick M., Prager S., Bennett D., Lam N., 2014. Foundations of sustainability information representation theory: spatial–temporal dynamics of sustainable systems, International Journal of Geographical Information Science, 28:5, pp. 1165-1185.
- Nejadkoork F., Nicholson K., 2012. Integrating passive sampling and interpolation techniques to assess the spatio-temporal variability of urban pollutants using limited data sets, Environmental Engineering and Management Journal, Vol.11, No. 9, pp. 1649-1655.
- Wotawa F., Rodriguez-Roda I., Comas J., 2010. Environmental decision support systems based on models and model-based reasoning, Environmental Engineering and Management Journal, Vol. 9, No.2, pp. 189-195.
- Wallenius, J. D., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K., 2008. Multiple criteria decision making, multi attribute utility theory: Recent accomplishments and what lies ahead. Management Science, Vol. 54, No.7, pp. 1336–1349.
- Elbir, T., N. Mangir, M. Kara, S. Simsir, T. Eren, S. Ozdemir, 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, 44(4), pp. 441- 346.
- Younsi Z., Hamdadou D., Bouamrane K., 2010. Integration of GIS and Artificial Neural Networks Faculty of Sciences, International Federation of Surveyors (FIG), DK-1780, Copenhagen, Denmark.
- Jiménez E., Tapiador F. J., Sáez-Martínez F., 2015. Atmospheric pollutants in a changing environment, Environment Science and Pollution Research, Vol, 22. pp: 4789–4792.
- Kanevski. Mikhail, 2011. Advanced Mapping of Environmental Data, Geo statistics, Machine Learning and Bayesian Maximum Entropy, UK.
- Jank R., Kellerov D., Schieber B., 2015. Spatial and Temporal Variations in O3 Concentrations in Western Carpathian Rural Mountain Environments, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp: 2003-2008.
- Ghodousi M., Atabi F., Nouri J., Gharagozlu A., 2016. Air Quality Management in Tehran Metropolis Using a Multi-Dimensional Decision Support System, Polish Journal of Environmental Studies, Vol. 25, No. 6, pp: 1-11.
- Ghodousi, M., Atabi, F., Nouri, J., 12-13 Jan 2016, "Multi-dimensional decision support system for air pollution management in Tehran", Fourth National Conference on Air and Noise Pollution Control, Tehran, Iran (in Persian).
_||_
- Cofała, J., Amann, M., Asman, W., Bertok, I., Heyes, C., Hoeglund, I.L., Schoepp, W. & Wagner, F., 2010. Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Environmental Protection, Vol. 36, No.1, pp. 29-39.
- Zhu, Y.G., 2012, Environmental impacts of rapid urbanization in China: a showcase of recent research developments. Environment Science and Pollution Research, Vol. 19, pp.41-51.
- Kobus D., Kostrzewa J., 2015. The use of spatial data processing tools for air quality assessments – practical examples, Air Quality Monitoring Department, Institute of Environmental Protection – National Research Institute (IOS-PIB), Information Systems in Management, Vol. 4, pp. 251-263.
- Ahmadi A., Abbaspour M., Arjmandi R., Abedi Z., 2015. Air Quality Risk Index (AQRI) and its application for a megacity, International Journal of Environmental Science and Technology, pp. 1-14.
- Atlas of Tehran Metropolis, 2012. Tehran Municipality, ICT organization, Tehran, Iran.
- Syp A., Faber A., Borzęcka-Walker M., Osuch D., 2015. Assessment of Greenhouse Gas Emissions in Winter Wheat Farms Using Data Envelopment Analysis Approach, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp. 2197-2203.
- 7. Peckham, S., Grell, G., McKeen, S., Fast, J., Gustafson, W., Ghan, S., et al., 2010. Characterization of urban air quality using GIS as a management system. Environmental pollution, Vol.122, No.1, pp.15-17.
- 8. Hajek, P., Olej. V., 2011. Air Quality Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networks, System Engineering and Informatics coference, Czech.
- Elbir, T., Mangir N., Kara M., Simsir S., Eren T., Ozdemir S., 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, Vol. 44, No.4, pp. 441- 454.
- Nyerges T., Roderick M., Prager S., Bennett D., Lam N., 2014. Foundations of sustainability information representation theory: spatial–temporal dynamics of sustainable systems, International Journal of Geographical Information Science, 28:5, pp. 1165-1185.
- Nejadkoork F., Nicholson K., 2012. Integrating passive sampling and interpolation techniques to assess the spatio-temporal variability of urban pollutants using limited data sets, Environmental Engineering and Management Journal, Vol.11, No. 9, pp. 1649-1655.
- Wotawa F., Rodriguez-Roda I., Comas J., 2010. Environmental decision support systems based on models and model-based reasoning, Environmental Engineering and Management Journal, Vol. 9, No.2, pp. 189-195.
- Wallenius, J. D., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K., 2008. Multiple criteria decision making, multi attribute utility theory: Recent accomplishments and what lies ahead. Management Science, Vol. 54, No.7, pp. 1336–1349.
- Elbir, T., N. Mangir, M. Kara, S. Simsir, T. Eren, S. Ozdemir, 2010. Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, 44(4), pp. 441- 346.
- Younsi Z., Hamdadou D., Bouamrane K., 2010. Integration of GIS and Artificial Neural Networks Faculty of Sciences, International Federation of Surveyors (FIG), DK-1780, Copenhagen, Denmark.
- Jiménez E., Tapiador F. J., Sáez-Martínez F., 2015. Atmospheric pollutants in a changing environment, Environment Science and Pollution Research, Vol, 22. pp: 4789–4792.
- Kanevski. Mikhail, 2011. Advanced Mapping of Environmental Data, Geo statistics, Machine Learning and Bayesian Maximum Entropy, UK.
- Jank R., Kellerov D., Schieber B., 2015. Spatial and Temporal Variations in O3 Concentrations in Western Carpathian Rural Mountain Environments, Polish Journal of Environmental Studies, Vol. 24, No. 5, pp: 2003-2008.
- Ghodousi M., Atabi F., Nouri J., Gharagozlu A., 2016. Air Quality Management in Tehran Metropolis Using a Multi-Dimensional Decision Support System, Polish Journal of Environmental Studies, Vol. 25, No. 6, pp: 1-11.
- Ghodousi, M., Atabi, F., Nouri, J., 12-13 Jan 2016, "Multi-dimensional decision support system for air pollution management in Tehran", Fourth National Conference on Air and Noise Pollution Control, Tehran, Iran (in Persian).