استفاده از ضایعات سیب زمینی جهت تولید رنگدانه توسط موناسکوس پورپورئوس در کشت غوطه وری
محورهای موضوعی : میکروبیولوژی مواد غذاییفرزانه کمالی 1 , مهشید جهادی 2 , الهام خسروی 3 , نفیسه قاسمی سپرو 4
1 - دانش آموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
3 - مربی گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
4 - کارشناس ارشد آزمایشگاه گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
کلید واژه: کشت غوطهوری, ضایعات نشاسته سیب زمینی, موناسکوس پورپورئوس,
چکیده مقاله :
مقدمه: از بین میکروارگانیسمهای تولیدکننده رنگدانه، Monascus purpureus به دلیل تولید رنگدانههای قرمز و نارنجی با خواص درمانی در بیماریهای سرطان، التهاب، دیابت و پیشگیری و کاهش چربی اهمیت دارد.مواد و روش ها: در این پژوهش تاثیر سه عامل جایگزینی ضایعات نشاسته سیب زمینی (100- 20 درصد)، مقدار کلریدسدیم (14-6 گرم) و زمان تنش حرارتی سوسپانسیون اسپوری (90-50 ثانیه) بر رشد قارچ M. purpureus و تولید رنگدانههای قرمز و نارنجی در شرایط دمای 30 درجه سلسیوس در کشت غوطهوری توسط طرح مرکب مرکزی در سطح اطمینان 95 درصد مورد مطالعه قرار گرفت.یافته ها: نتایج نشان داد افزایش جایگزینی ضایعات نشاسته سیب زمینی تا 50 درصد به طور معنی داری رنگدانه های قرمز و نارنجی را کاهش و تولید زیست توده را افزایش داد (05/0p<). از طرفی افزایش زمان تنش حرارتی سوسپانسیون اسپوری تا 73 ثانیه و افزایش میزان کلریدسدیم در غلظت بالای 9 گرم در لیتر تولید زیست توده و رنگدانه های قرمز و نارنجی را به طور معنی داری افزایش داد (05/0p<). در دو نقطه ی بهینه با میزان جایگزینی ضایعات نشاسته سیبزمینی (3/20 و 5/42) (درصد)، مدتزمان تنش حرارتی سوسپانسیون اسپوری (65 و 81) (ثانیه) و غلظت کلرید سدیم (12 و 6) (گرم در لیتر) به ترتیب میزان زیستتوده (g/l)، رنگدانههای قرمز و نارنجی (OD/l) در نقطه بهینه یک (24/5، 55/4 و 3/5) و در نقطه بهینه دو (55/4، 37/4 و 4/5) بدست آمد.نتیجه گیری: از آنجایی که جایگزینی ضایعات نشاسته سیب زمینی، تولید زیست توده را افزایش اما تولید رنگدانه های قرمز و نارنجی توسط Monascus purpureus را کاهش داد، ضایعات نشاسته سیب زمینی باید در سطح بهینه در محیط کشت استفاده شود تا بهترین بهره وری تولید به دست آید.
Introduction: Among the pigment-producing microorganisms, Monascus purpureus is important for controlling diabetes and preventing and reducing fat due to the production of red and orange pigments with therapeutic properties such as anti-cancer, anti-inflammatory. Materials and Methods: In this study, the effect of replacement of potato starch waste (RPSW) (20-100%), sodium chloride (6-14 g) and thermal stress time of spore suspension (TST) (50-90 seconds) on the growth of M. purpureus and production of red and orange pigments at 30 ° C in submerge culture were studied by the central composite design at 95% confidence level. Results: The results showed that increasing the RPSW by up to 50% significantly reduced red and orange pigments and increased biomass production (p <0.05). On the other hand, increasing the TST of spore suspension to 73 seconds and increasing the amount of sodium chloride at the concentrations above 9 g / l significantly increased the production of biomass and red and orange pigments (p <0.05). At the two optimal point with the RPSW (20.3, 42.5) (%), TDT spore suspension (65, 81)(s) and concentration of sodium chloride (12, 6) (g/l) respectively, the biomass (g / l), red and orange pigments (OD/l) (5.24, 4.55 and 3.5) and (4.55, 4.37 and 5.4), respectively, were obtained.Conclusion: The results of this study showed that since the replacement of potato starch waste increased biomass production but reduced the production of red and orange pigments Monascus purpureus, its amount should be used optimally in culture to achieve the best productivity.
Abdel-Raheam, H., Farag, M. K., Ragab, W. S., Ramadan, E. S. A. & Mahmoud, N. M. (2016). Potato Manufacturing Wastes–a Novel Substrate for the Production of Natural Pigments from Monascus purpureus. Assiut Journal of Agriculture Science, 47, 13-23.
Abdollahi, F., Jahadi, M. & Ghavami, M., (2021). Thermal Stability of Natural Pigments Produced by Monascus purpureus in Submerged Fermentation. Food Science & Nutrition, 9(9), 4855-4862.
Abrashev, R., Dolashka, P., Christova, R., Stefanova, L. & Angelova, M. (2005). Role of Antioxidant Enzymes in Survival of Conidiospores of Aspergillus niger 26 Under Conditions of Temperature Stress. Journal of Applied Microbiology, 99(4), 902-909.
Asghari. M., Jahadi. M. & Ghasemi-sepro. N. (2019). Evaluation of Incubation Time, Salt and Date Waste in Production of Orange Pigment by Monascus purpureus Using Response Surface Methodology. Journal of Food Microbiology, 6(3), 66-69. [In Persian]
Asghari, M., Jahadi, M., Hesam, F. & Ghasemi-Sepro, N. (2021). Optimization of Monascus Pigment Production on Date Waste Substrates Using Solid State Fermentation. Applied Food Biotechnology, 8(3), 247-254.
Babitha, S., Soccol, C. R. & Pandey, A. (2007). Effect of Stress on Growth, Pigment Production and Morphology of Monascus sp. in Solid Cultures. Journal of Basic Microbiology, 47, 118-126.
Bakhshi. F. & Jahadi. M. (2018). Optimization of the Orang Pigment Production by Monascus purpureus from Date Waste Using Response Surface Methodology. Journal of Food Microbiology, 4(4), 31-39. [In persiaan]
Bakhshi. F., Jahadi. M., Ghasemisepro. N., Jahanfar. S. (2022). Modeling Red Monascus Pigment Production on Date Waste Substrate Using Submerged Cultivation. Journal of Food Biosciences and Technology, 12(3), 15-26.
Carvalho, J. C., Pandey, A., Babitha, S. & Saccol, C. R. (2003). Production of Monascus biopigments: an overview. Agro Food Industry Hi Tech, 14. 37-43.
Chen, G., Yang, S., Wang, C., Shi, K., Zhao, X. & Wu, Z. (2020). Investigation of the Mycelial Morphology of Monascus and the Expression of Pigment Biosynthetic Genes in High-Salt-Stress Fermentation. Applied Microbiology and Biotechnology, 104(6), 2469-2479.
Chen, X., Chen, M., Wu, X. & Li, X. (2021). Cost-effective Process for the Production of Monascus Pigments Using Potato Pomace as Carbon Source by Fed-batch Submerged Fermentation. Food Science & Nutrition, 9(10), 5415-5427.
Costa, J.P.V. & Vendruscolo, F. (2017). Production of Red Pigments by Monascus ruber CCT 3802 Using Lactose as a Substrate. Biocatalysis and Agricultural Biotechnology, 11, 50-55.
Dikshit, R. & Tallapragada, P. (2013). Comparative Study of Monascus sanguineus and Monascus purpureus for Red Pigment Production Under Stress Condition. International Food Research Journal, 20(3),1235.
He, J., Jia, M., Li, W., Deng, J., Ren, J., Luo, F., Bai, J. & Liu, J. (2021). Toward improvements for enhancement the productivity and color value of Monascus pigments: a critical review with recent updates. Critical Reviews in Food Science and Nutrition, pp.1-15.
Hilares, R.T., de Souza, R.A., Marcelino, P.F., da Silva, S.S., Dragone, G., Mussatto, S.I. & Santos, J.C. (2018). Sugarcane Bagasse Hydrolysate as a Potential Feedstock for Red Pigment Production by Monascus ruber. Food Chemistry, 245, 786-791.
Kantifedaki, A., Kachrimanidou, V., Mallouchos, A., Papanikolaou, S. & Koutinas, A.A. (2018). Orange Processing Waste Valorisation for the Production of Bio-based Pigments Using the Fungal Strains Monascus purpureus and Penicillium purpurogenum. Journal of Cleaner Production, 185, 882-890.
Keivani, H., Jahadi, M. & Ghasemisepero, N. (2020). Optimizing Submerged Cultivation for the Production of Red Pigments by Monascus purpureus on Soybean Meals Using Response Surface Methodology. Applied Food Biotechnology, 7, 143-152.
Kolahdozan, R., Jahadi, M., Naghavy, N.S. & Zia, M.A. (2021). Investigating the Effect of Sodium Azide and Nitrous Acid on the Morphological Characteristics of Monascus purpureus and Pigment Production. Biological Journal of Microorganism, 10(39), 13-28. [In Persian]
Lee, Y.K., Chen, D.C., Chauvatcharin, S., Seki, T. & Yoshida, T. (1995). Production of Monascus pigments by a Solid-liquid State Culture Method. Journal of Fermentation and Bioengineering, 79(5), 516-518.
Lopes, F.C., Tichota, D.M., Pereira, J.Q., Segalin, J., de Oliveira Rios, A. & Brandelli, A. (2013). Pigment Production by Filamentous Fungi on Agro-industrial Byproducts: an Eco-friendly Alternative. Applied Biochemistry and Biotechnology, 171(3), 616-625.
Nimnoi, P. & Lumyong, S. (2011). Improving Solid-State Fermentation of Monascus purpureus on agricultural products for pigment production. Food and Bioprocess Technology, 4, 1384-1390.
Pahlavaninezad. A., Jahadi. M., Naghavi, N. S. & Zia. M. A. (2021). The Effect of Ultraviolet Light on Pigment Production and Morphological Characteristics of Monascus purpureus. Journal of Food Microbiology, 8(3), 18-29. [In Persian]
Panesar, R., Kaur, S. & Panesar, P.S., (2015). Production of microbial pigments utilizing agro-industrial waste: a review. Current Opinion in Food Science, 1, 70-76.
Salimian Rizi, E., Jahadi, M. & Zia, M. (2022). Evaluation of gamma irradiation effect on morphological changes, macroscopic, microscopic characteristics and pigment production of Monascus purpureus. Journal of Food Processing and Preservation, 46 (1), e16129.
Schlesinger, M.J. (1990). Heat shock proteins. Journal of Biological Chemistry, 265(21), 12111-12114.
Sharmila, G., Nidhi, B. & Muthukumaran, C. (2013). Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Industrial Crops and Products, 44, 158-164.
Shi, J., Qin, X., Zhao, Y., Sun, X., Yu, X. & Feng, Y. (2022). Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination. Process Biochemistry, 117, 19-29.
Shojaosadati, S. A. & Asadollahi, M.A. (2015). Industrial Biotechnology, 8th Edition,
Publisher: Tarbiat Modares University, Tehran. [In Persian]
Silbir, S. & Goksungur, Y. (2019). Natural red pigment production by Monascus purpureus in submerged fermentation systems using a food industry waste: Brewer’s spent grain. Foods, 8. 161.
Srivastav, P., Yadav, V.K., Govindasamy, S. & Chandrasekaran, M. (2015). Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation. Nutrafoods, 14(3), 159-167.
Sun, C., Wu, X., Chen, X., Li, X., Zheng, Z. & Jiang, S. (2020). Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food chemistry, 316, 126243.
Teng, S.S. & Feldheim, W. (1998). Analysis of anka pigments by liquid chromatography with diode array detection and tandem mass spectrometry. Chromatographia, 47(9), 529-536.
Vendruscolo, F. & Ninow, J.L. (2014). Apple pomace as a substrate for fungal chitosan production in an airlift bioreactor. Biocatalysis and Agricultural Biotechnology, 3(4), 338-342.
Zhang, B. B., L. P. Lu, & G. R. Xu. (2015). Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. Journal of Biotechnology 206, 60–65.
Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z. & Liu, T. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource Technology, 181, 136-142.
Zhen, Z., Xiong, X., Liu, Y., Zhang, J., Wang, S., Li, L. & Gao, M. (2019). NaCl inhibits citrinin and stimulates Monascus pigments and monacolin K production. Toxins, 11(2), 118.
Zhou, B., Wang, Y., Lu, H. & Zhou, Y. (2014). Effect of ammonium salts on pigments production by Monascus anka mutant in 5L bioreactor. Chiang Mai Journal of Science, 41, 1032-1043.
_||_Abdel-Raheam, H., Farag, M. K., Ragab, W. S., Ramadan, E. S. A. & Mahmoud, N. M. (2016). Potato Manufacturing Wastes–a Novel Substrate for the Production of Natural Pigments from Monascus purpureus. Assiut Journal of Agriculture Science, 47, 13-23.
Abdollahi, F., Jahadi, M. & Ghavami, M., (2021). Thermal Stability of Natural Pigments Produced by Monascus purpureus in Submerged Fermentation. Food Science & Nutrition, 9(9), 4855-4862.
Abrashev, R., Dolashka, P., Christova, R., Stefanova, L. & Angelova, M. (2005). Role of Antioxidant Enzymes in Survival of Conidiospores of Aspergillus niger 26 Under Conditions of Temperature Stress. Journal of Applied Microbiology, 99(4), 902-909.
Asghari. M., Jahadi. M. & Ghasemi-sepro. N. (2019). Evaluation of Incubation Time, Salt and Date Waste in Production of Orange Pigment by Monascus purpureus Using Response Surface Methodology. Journal of Food Microbiology, 6(3), 66-69. [In Persian]
Asghari, M., Jahadi, M., Hesam, F. & Ghasemi-Sepro, N. (2021). Optimization of Monascus Pigment Production on Date Waste Substrates Using Solid State Fermentation. Applied Food Biotechnology, 8(3), 247-254.
Babitha, S., Soccol, C. R. & Pandey, A. (2007). Effect of Stress on Growth, Pigment Production and Morphology of Monascus sp. in Solid Cultures. Journal of Basic Microbiology, 47, 118-126.
Bakhshi. F. & Jahadi. M. (2018). Optimization of the Orang Pigment Production by Monascus purpureus from Date Waste Using Response Surface Methodology. Journal of Food Microbiology, 4(4), 31-39. [In persiaan]
Bakhshi. F., Jahadi. M., Ghasemisepro. N., Jahanfar. S. (2022). Modeling Red Monascus Pigment Production on Date Waste Substrate Using Submerged Cultivation. Journal of Food Biosciences and Technology, 12(3), 15-26.
Carvalho, J. C., Pandey, A., Babitha, S. & Saccol, C. R. (2003). Production of Monascus biopigments: an overview. Agro Food Industry Hi Tech, 14. 37-43.
Chen, G., Yang, S., Wang, C., Shi, K., Zhao, X. & Wu, Z. (2020). Investigation of the Mycelial Morphology of Monascus and the Expression of Pigment Biosynthetic Genes in High-Salt-Stress Fermentation. Applied Microbiology and Biotechnology, 104(6), 2469-2479.
Chen, X., Chen, M., Wu, X. & Li, X. (2021). Cost-effective Process for the Production of Monascus Pigments Using Potato Pomace as Carbon Source by Fed-batch Submerged Fermentation. Food Science & Nutrition, 9(10), 5415-5427.
Costa, J.P.V. & Vendruscolo, F. (2017). Production of Red Pigments by Monascus ruber CCT 3802 Using Lactose as a Substrate. Biocatalysis and Agricultural Biotechnology, 11, 50-55.
Dikshit, R. & Tallapragada, P. (2013). Comparative Study of Monascus sanguineus and Monascus purpureus for Red Pigment Production Under Stress Condition. International Food Research Journal, 20(3),1235.
He, J., Jia, M., Li, W., Deng, J., Ren, J., Luo, F., Bai, J. & Liu, J. (2021). Toward improvements for enhancement the productivity and color value of Monascus pigments: a critical review with recent updates. Critical Reviews in Food Science and Nutrition, pp.1-15.
Hilares, R.T., de Souza, R.A., Marcelino, P.F., da Silva, S.S., Dragone, G., Mussatto, S.I. & Santos, J.C. (2018). Sugarcane Bagasse Hydrolysate as a Potential Feedstock for Red Pigment Production by Monascus ruber. Food Chemistry, 245, 786-791.
Kantifedaki, A., Kachrimanidou, V., Mallouchos, A., Papanikolaou, S. & Koutinas, A.A. (2018). Orange Processing Waste Valorisation for the Production of Bio-based Pigments Using the Fungal Strains Monascus purpureus and Penicillium purpurogenum. Journal of Cleaner Production, 185, 882-890.
Keivani, H., Jahadi, M. & Ghasemisepero, N. (2020). Optimizing Submerged Cultivation for the Production of Red Pigments by Monascus purpureus on Soybean Meals Using Response Surface Methodology. Applied Food Biotechnology, 7, 143-152.
Kolahdozan, R., Jahadi, M., Naghavy, N.S. & Zia, M.A. (2021). Investigating the Effect of Sodium Azide and Nitrous Acid on the Morphological Characteristics of Monascus purpureus and Pigment Production. Biological Journal of Microorganism, 10(39), 13-28. [In Persian]
Lee, Y.K., Chen, D.C., Chauvatcharin, S., Seki, T. & Yoshida, T. (1995). Production of Monascus pigments by a Solid-liquid State Culture Method. Journal of Fermentation and Bioengineering, 79(5), 516-518.
Lopes, F.C., Tichota, D.M., Pereira, J.Q., Segalin, J., de Oliveira Rios, A. & Brandelli, A. (2013). Pigment Production by Filamentous Fungi on Agro-industrial Byproducts: an Eco-friendly Alternative. Applied Biochemistry and Biotechnology, 171(3), 616-625.
Nimnoi, P. & Lumyong, S. (2011). Improving Solid-State Fermentation of Monascus purpureus on agricultural products for pigment production. Food and Bioprocess Technology, 4, 1384-1390.
Pahlavaninezad. A., Jahadi. M., Naghavi, N. S. & Zia. M. A. (2021). The Effect of Ultraviolet Light on Pigment Production and Morphological Characteristics of Monascus purpureus. Journal of Food Microbiology, 8(3), 18-29. [In Persian]
Panesar, R., Kaur, S. & Panesar, P.S., (2015). Production of microbial pigments utilizing agro-industrial waste: a review. Current Opinion in Food Science, 1, 70-76.
Salimian Rizi, E., Jahadi, M. & Zia, M. (2022). Evaluation of gamma irradiation effect on morphological changes, macroscopic, microscopic characteristics and pigment production of Monascus purpureus. Journal of Food Processing and Preservation, 46 (1), e16129.
Schlesinger, M.J. (1990). Heat shock proteins. Journal of Biological Chemistry, 265(21), 12111-12114.
Sharmila, G., Nidhi, B. & Muthukumaran, C. (2013). Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Industrial Crops and Products, 44, 158-164.
Shi, J., Qin, X., Zhao, Y., Sun, X., Yu, X. & Feng, Y. (2022). Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination. Process Biochemistry, 117, 19-29.
Shojaosadati, S. A. & Asadollahi, M.A. (2015). Industrial Biotechnology, 8th Edition,
Publisher: Tarbiat Modares University, Tehran. [In Persian]
Silbir, S. & Goksungur, Y. (2019). Natural red pigment production by Monascus purpureus in submerged fermentation systems using a food industry waste: Brewer’s spent grain. Foods, 8. 161.
Srivastav, P., Yadav, V.K., Govindasamy, S. & Chandrasekaran, M. (2015). Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation. Nutrafoods, 14(3), 159-167.
Sun, C., Wu, X., Chen, X., Li, X., Zheng, Z. & Jiang, S. (2020). Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food chemistry, 316, 126243.
Teng, S.S. & Feldheim, W. (1998). Analysis of anka pigments by liquid chromatography with diode array detection and tandem mass spectrometry. Chromatographia, 47(9), 529-536.
Vendruscolo, F. & Ninow, J.L. (2014). Apple pomace as a substrate for fungal chitosan production in an airlift bioreactor. Biocatalysis and Agricultural Biotechnology, 3(4), 338-342.
Zhang, B. B., L. P. Lu, & G. R. Xu. (2015). Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. Journal of Biotechnology 206, 60–65.
Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z. & Liu, T. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource Technology, 181, 136-142.
Zhen, Z., Xiong, X., Liu, Y., Zhang, J., Wang, S., Li, L. & Gao, M. (2019). NaCl inhibits citrinin and stimulates Monascus pigments and monacolin K production. Toxins, 11(2), 118.
Zhou, B., Wang, Y., Lu, H. & Zhou, Y. (2014). Effect of ammonium salts on pigments production by Monascus anka mutant in 5L bioreactor. Chiang Mai Journal of Science, 41, 1032-1043.