بررسی اثربخشی داده های ماهواره ای سنجنده های TM ماهواره های لندست 5 و سنجنده های OLI و TIRS لندست 8 در پایش اثرات خشکسالی بر منابع آب سطحی تالاب میانکاله
محورهای موضوعی : کاربرد کامپیوتر در مسائل آب و خاک
1 - استاديار، گروه جغرافيا ، دانشگاه زنجان، زنجان، ايران.
کلید واژه: NDWI, MNDWI, NDVI, خشکسالي, ميانکاله,
چکیده مقاله :
زمينه و هدف: فراواني و شدت خشکسالي به علت تغييرات اقليمي و فعاليتهاي انساني در حال افزايش بوده و خطرات قابل توجهي را براي آبهاي سطحي به ويژه در مناطق خشک و نيمه خشک ايجاد ميکند. در اين تحقيق ميزان قابليت دادههاي ماهواره اي سنجنده TM ماهواره لندست 5 و سنجندههاي OLI و TIRS ماهواره لندست 8 در پايش خشکسالي بر منابع آبي تالاب ميانکاله ارزيابي گرديد.
روش پژوهش: در اين تحقيق براي دوره زماني 1990 تا 2023، تصاوير سنجنده TM ماهواره لندست 5 و سنجنده OLI و TIRS ماهواره لندست 8 تهيه گرديد. تصاوير هم براي فصل مرطوب و هم براي فصل خشک در نظر گرفته شدند تا تنوع آبهاي سطحي را در طول فصول به تصوير بکشند. براي فصل مرطوب ماه ميدر نظر گرفته شده و براي ماه خشک نيز از دادههاي ماه جولاي بهره گرفته شد. تصاوير فوق بايستي بدون پوشش ابر باشند. اين تصاوير از سازمان زمين شناسي آمريکا دانلود گرديد. براي بررسي روند خشکسالي، شاخصهاي چند طيفي تفاوت نرمال شده پوشش گياهي (NDVI)، تفاوت نرمال شده آب (NDWI)، شاخص اصلاح شده تفاوت نرمال شده آب (MNDWI) و شاخص آب سطح زمين (LSWI) محاسبه شده و مناسب ترين روش براي تشخيص آبهاي سطحي و پايش خشکسالي شناسايي گرديد. به اين منظور روابط همبستگي بين هر يک از شاخصها با شاخص دماي سطح زمين برآورد شده و بر اين اساس معادله رگرسيوني محاسبه شده و مقادير خشکسالي در پنج رده خيلي شديد، شديد، متوسط، کم و خيلي کم محاسبه شده و نقشه مربوطه ترسيم شد.
يافتهها: بر اساس يافتههاي تحقيق، پهنههاي وسيع تري با دماهاي بالاتر مواجه گرديدهاند. از سال 1990 تا 2023 مناطقي که داراي دماي کمتر از 19 درجه سانتيگراد بودند از 645 کيلومتر مربع در سال 1990 به 296 کيلومتر مربع در سال 2023 کاهش يافته و در مقابل مناطقي که دماي بالاي 29 درجه سانتيگراد را تجربه کرده بودند از 2 کيلومتر مربع در سال 1990 به 320 کيلومتر مربع در سال 2023 افزايش يافته که اکثرا در بخش غربي تالاب و در نواحي مشاهده شده که خشک شده است. علت اين امر خشک شدن بخش وسيعي از غرب تالاب در اين بازه زماني ميباشد. فرايند فوق بر پوشش گياهي منطقه تاثير گذاشته و به علت خشک شدن بخش غربي، پهنه وسيع ترين در اين منطقه با خشکي شديد مواجه شد. در سال 1990 حدود 3/243 کيلومتر مربع از منطقه با خشکي شديد مواجه بوده که اين ميزان در سال 2023 به 7/280 کيلومتر مربع افزايش يافته است. البته افزايش جزئي در اين محدوده مشاهده شد. تغييرات قابل توجه در محدوده متوسط ديده شده به طوري که ميزان خشکي متوسط از 2/52 کيلومتر مربع در سال 1990 به 1/254 کيلومتر مربع رسيده که افزايش 4 برابري را نشان ميدهد.
نتايج: نتايج نشان داد که شاخص MNDWI از بيشترين همبستگي با شاخص LST در سالهاي 1990 و 2023 برخوردار بوده بطوري که مقادير همبستگي براي اين سالها به ترتيب معادل 83/0- و 88/0- ميباشد. لذ از اين شاخص براي برآورد خشکسالي بهره گرفته شد. براين اساس مشاهده شد که ميزان خشکسالي متوسط بيشترين گسترش را داشته و از 2/52 کيلومتر مربع به 1/254 کيلومتر مربع رسيده که اين امر نشان دهنده حرکت آرام منطقه به سمت خشکسالي شديد دارد. اين رخداد باعث گرديد تا سطح تالاب از 511 کيلومتر مربع در سال 1990 به 351 کيلومتر مربع در سال 2023 کاهش يابد.
Background and Aim: The frequency and severity of droughts are increasing due to climate changes and human activities, and they create significant risks for surface water, especially in arid and semi-arid regions. In this research, the capability of satellite data of TM sensor of Landsat 5 satellite and OLI and TIRS sensors of Landsat 8 satellite in drought monitoring of water resources of Miankale wetland was evaluated.
Method: In this study, images from the TM sensor of Landsat 5 and the OLI and TIRS sensors of Landsat 8 were prepared for the period 1990 to 2023. Images were taken for both the wet and dry seasons to depict the variability of surface water during the seasons. May was taken for the wet season and July data was used for the dry month. The above images should be free of cloud cover. These images were downloaded from the US Geological Survey. To investigate the drought trend, multi-spectral indices of Normalized Difference of Vegetation (NDVI), Normalized Difference of Water index (NDWI), Modified Normalized Difference of Water Index (MNDWI) and Land Surface Water Index (LSWI) were calculated and the most appropriate method. It was identified for surface water detection and drought monitoring. For this purpose, the correlation relations between each of the indices with the earth surface temperature index were estimated and based on this, the regression equation was calculated and the values of drought in five categories very severe, severe, moderate, low and very low were calculated and the corresponding map was drawn.
Results: According to the research findings, wider areas have been exposed to higher temperatures. From 1990 to 2023, areas with temperatures below 19 degrees Celsius have decreased from 645 square kilometers in 1990 to 296 square kilometers in 2023, while areas with temperatures above 29 degrees Celsius have increased from 2 square kilometers in 1990 to 320 square kilometers in 2023, mostly in the western part of the wetland and in areas that have been observed to have dried up. The reason for this is the drying of a large part of the western part of the wetland during this period. The above process has affected the vegetation of the region, and due to the drying of the western part, the widest area in this region has faced severe drought. In 1990, about 243.3 square kilometers of the region faced severe drought, which increased to 280.7 square kilometers in 2023. Of course, a slight increase was observed in this area. Significant changes have been seen in the average area, with the average aridity increasing from 52.2 km2 in 1990 to 254.1 km2, a fourfold increase.
Conclusion: The results showed that the MNDWI index had the highest correlation with the LST index in the years 1990 and 2023, so that the correlation values for these years are -0.83 and -0.88, respectively. This index was used to estimate drought. Based on this, it was observed that the amount of average drought has expanded the most and reached from 52.2 square kilometers to 254.1 square kilometers, which indicates the slow movement of the region towards severe drought. This incident caused the wetland area to decrease from 511 square kilometers in 1990 to 351 square kilometers in 2023.
Benefoh, D.T., Villamor, G.B., van Noordwijk, M., Borgemeister, C., Asante, W.A., & Asubonteng, K.O. (2018). Assessing land-use typologies and change intensities in a structurally complex Ghanaian cocoa landscape. Appl. Geogr 99: 109–119.
Chandrasekar, K., Sesha Sai, M., Roy, P., & Dwevedi, R. (2010). Land surface water index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. Int. J. Rem. Sens 31 (15): 3987–4005.
d’Andrimont, R., & Defourny, P. (2018). Monitoring African water bodies from twice-daily MODIS observation. GIScience Remote Sens 55 (1): 130–153.
Dube, T., & Mutanga, O. (2015). Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogrammetry Remote Sens 101: 36–46.
Dzurume, T., Dube, T., Thamaga, K.H., Shoko, C., & Mazvimavi, D. (2022). Use of multispectral satellite data to assess impacts of land management practices on wetlands in the Limpopo Transfrontier River Basin, South Africa. S. Afr. Geogr. J 104 (2): 193–212.
Feyisa, G.L., Meilby, H., Fensholt, R., & Proud, S.R. (2014). Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ 140: 23–35.
Frischen, J., Meza, I., Rupp, D., Wietler, K., & Hagenlocher, M. (2020). Drought risk to agricultural systems in Zimbabwe: a spatial analysis of hazard, exposure, and vulnerability. Sustainability 12 (3): 752-768
Hagenlocher, M., Meza, I., Anderson, C.C., Min, A., Renaud, F.G., Walz, Y., Siebert, S., & Sebesvari, Z. (2019). Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett 14 (8): 083002
Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: a review. Rev. Geophys 56 (2): 333–360.
Jang, D. (2018). Assessment of meteorological drought indices in Korea using RCP 8.5 scenario. Water 10 (3): 283-302
Janke, R., Murray, R., Uber, J., & Taxon, T. (2006). Comparison of physical sampling and real-time monitoring strategies for designing a contamination warning system in a drinking water distribution system. J. Water Resour. Plann. Manag 132 (4): 310–313.
Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An automated method for extracting rivers and lakes from Landsat imagery. Rem. Sens 6 (6): 5067–5089.
Jiao, W., Zhang, L., Chang, Q., Fu, D., Cen, Y., & Tong, Q. (2016). Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States. Rem. Sens 8 (3): 224- 241
Jin, C., Xiao, X., Merbold, L., Arneth, A., Veenendaal, E., & Kutsch, W.L. (2013). Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote Sens. Environ 135: 189–201.
Kafy, A.A. (2021). Impact of Vegetation Cover Loss on Surface Temperature and Carbon Emission in a Fastest-Growing City, Cumilla, Bangladesh, 207. Building and Environment.
Legesse, G., & Suryabhagawan, V.K. (2014). Remote sensing and GIS based agricultural drought assessment in East Shewa Zone, Ethiopia. Trop. Ecol 55 (3): 349–363.
Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Rem. Sens 5 (11): 5530–5549.
Liu, Q., Zhang, S., Zhang, H., Bai, Y., & Zhang, J. (2020). Monitoring drought using composite drought indices based on remote sensing. Sci. Total Environ 711: 134585
Masocha, M., Dube, T., Makore, M., Shekede, M.D., & Funani, J. (2018). Surface water bodies mapping in Zimbabwe using landsat 8 OLI multispectral imagery: a comparison of multiple water indices. Phys. Chem. Earth, Parts A/B/C 106: 63–67.
McFeeters, S.K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Rem. Sens 17 (7): 1425–1432.
Menarguez, M.A. (2015). Global Water Body Mapping from 1984 to 2014 Using High Resolution Multispectral Satellite Imagery. University of Oklahoma
Mishra, A.K., & Singh, V.P. (2010). A review of drought concepts. J. Hydrol 391 (1–2): 202–216.
Moeletsi, M.E., & Walker, S. (2012). Assessment of agricultural drought using a simple water balance model in the Free State Province of South Africa. Theor. Appl. Climatol 108: 425–450.
Ndlovu, T., & Mjimba, V. (2021). Drought risk-reduction and gender dynamics in communal cattle farming in southern Zimbabwe. Int. J. Disaster Risk Reduc 58: 102203
Nguyen, H., Wheeler, M.C., Hendon, H.H., Lim, E.-P., Otkin, J.A. (2021). The 2019 flash droughts in subtropical eastern Australia and their association with large-scale climate drivers. Weather Clim. Extrem 32: 100321
Nilsson, M., Griggs, D., & Visbeck, M. (2016). Policy: map the interactions between sustainable development goals. Nature 534 (7607): 320–322.
Panu, U., & Sharma, T. (2002). Challenges in drought research: some perspectives and future directions. Hydrol. Sci. J 47 (S1): S19–S30.
Rouse, J.W., Hass, R.H., Schell, J.A., & Deering, D.W. (1973). Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symp 1: 309–317.
Sarp, G., & Ozcelik, M. (2017). Water body extraction and change detection using time series: a case study of Lake Burdur, Turkey. J. Taibah Univ. Sci 11 (3): 381–391.
Seaton, D., Dube, T., & Mazvimavi, D. (2020). Use of multi-temporal satellite data for monitoring pool surface areas occurring in non-perennial rivers in semi-arid environments of the Western Cape, South Africa. ISPRS J. Photogrammetry Remote Sens 167: 375–384.
Sheffield, J., Wood, E.F., & Roderick, M.L. (2012). Little change in global drought over the past 60 years. Nature 491 (7424): 435–438.
Thakur, S., Mondal, I., Bar, S., Nandi, S., Das, P., Ghosh, P.B., & De, T.K. (2020). Shoreline changes and its impact on the mangrove ecosystems of some Islands of Indian Sundarbans, North- East coast of India, J Clean Prod 284: 124764. Elsevier.
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Rem. Sens 27 (14): 3025–3033.
Zhang, X., Chen, N., Sheng, H., Ip, C., Yang, L., Chen, Y., Sang, Z., Tadesse, T., Lim, T.P.Y., & Rajabifard, A. (2019). Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 693: 133536
Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., Zou, Z., & Qin, Y. (2017). Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water 9 (4): 256.