پیشبینی روند تغییرات قیمت سهام با بهکارگیری شاخصهای تحلیل تکنیکی و استفاده از روش ترکیبی الگوریتم ژنتیک و شبکه عصبی مصنوعی: مطالعه موردی سهام ایران خودرو
محورهای موضوعی : اقتصاد کاربردیزینب آذریان 1 , سید مهدی همایونی 2
1 - دانشآموخته کارشناسی ارشد، گروه مهندسی صنایع، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - استادیار، گروه مهندسی صنایع، واحد لنجان، دانشگاه آزاد اسلامی، اصفهان، ایران (نویسنده مسئول) homayouni@iauln.ac.ir
کلید واژه: شاخصهای تحلیل تکنیکی, الگوریتم ژنتیک, شبکه عصبی مصنوعی, بورس اوراق بهادار,
چکیده مقاله :
همواره پیشبینی دقیق روند بازار سهام برای تصمیمگیریهای مالی سرمایهگذاران مهم بوده است. استفاده از مجموعهای از شاخصهای تحلیل تکنیکی یکی از پرکاربردترین روشهای پیشبینیهای مالی است. تعیین پارامترهای مناسب این شاخصها و همچنین ترکیب آنها یکی از چالشهای پژوهشگران است. از طرف دیگر، ماهیت غیرخطی و پویای تغییرات در روند بازار سهام موجب استفاده گسترده از روشهای پیشبینی غیرخطی همچون شبکه عصبی مصنوعی شده است. با وجود استفاده گسترده از شاخصهای تحلیل تکنیکی به عنوان ورودی شبکههای عصبی مصنوعی، تاکنون بهینهسازی پارامترهای شاخصهای تحلیل تکنیکی به عنوان ورودی شبکه عصبی مصنوعی پژوهش نشده است. با توجه به روند تغییرات انحصاری سهام یک شرکت نسبت به سایر شرکتها، استفاده از مجموعه پارامترهای پیشفرض یا یکسان برای تمام انواع سهام منطقی نیست. در این پژوهش، پارامترهای مجموعهای از شاخصهای تحلیل تکنیکی برای سهام یک شرکت با استفاده از الگوریتم ژنتیک بهینه شده است و به شبکه عصبی مصنوعی به عنوان ورودی داده میشود. از این روش ترکیبی برای پیشبینی روند تغییرات قیمت سهام روز بعد استفاده شده است. در این روش، فرض شده است که فرد سرمایهگذار براساس پیشبینی تصمیم میگیرد، که روز بعد، سهام را بخرد، بفروشد، یا نگه دارد. برای ارزیابی عملکرد روش ترکیبی ارائه شده، از یک شبکه عصبی مصنوعی با استفاده از شاخصهای تحلیل تکنیکی با پارامترهای پیشفرض نیز جهت پیشبینی روند تغییرات قیمت سهام استفاده شده است. این دو روش برای دادههای واقعی سهام شرکت ایران خودرو اجرا شده که نتایج نشان دهنده برتری روش ترکیبی با 25.1% کاهش در خطای پیشبینی نسبت به روش ساده است. طبقهبندی JEL:G10 ،G17 ،C45 ، C53، C61
