محاسبه ترازهای انرژی معادلات شرودینگر خطی به روش سینک
محورهای موضوعی : آمارخدیجه نوروزی 1 , سید محمد علی آل عمرانی نژاد 2 , مهدی سلیمانی 3 , بهناز فرنام 4
1 - گروه ریاضی، دانشکده علوم پایه، دانشگاه صنعتی قم، قم، ایران
2 - گروه ریاضی، دانشکده علوم پایه، دانشگاه صنعتی قم، قم، ایران
3 - گروه فیزیک، دانشکده علوم پایه، دانشگاه صنعتی قم، قم، ایران
4 - گروه ریاضی، دانشکده علوم پایه، دانشگاه صنعتی قم، قم، ایران
کلید واژه: Sinc Collocation Method, Finite difference Method, Eigenvalue, Eigen function,
چکیده مقاله :
محاسبه انرژیهای معادله شرودینگر در فیزیک از اهمیت ویژهای برخوردار است. به عنوان مثال در محاسبه میزان جذب نور و میزان شکست نور در یک ماده، محاسبه انرژیهای گذار بین زیرنواری و انرژیهای گذار بین نواری، از ترازهای انرژی استفاده میکنیم. همچنین، به کمک ترازهایهای انرژی میتوان چگالی حالات یک سیستم فیزیکی را یافت و از روی آن به دلیل عایق، نیم رسانا و یا فلز بودن یک ماده پیبرد. روشهای زیادی در خصوص محاسبه ترازهای انرژی وجود دارد که هرکدام از نقاط ضعف و قدرتی برخوردارند. روشهای تکرار مجانبی، الگوریتم ژنتیک، نومروف، شبکه های عصبی، ماتریس انتقال و ... تعدادی از آنها میباشند. محاسبه ترازهای انرژی به کمک توابع سینک، کمتر مورد توجه دانشمندان این حوزه بوده است. در این مقاله، کارایی روش هم محلی سینک در محاسبه این انرژیها را بررسی کردهایم. برای حل این مسائل، با استفاده از تقریب تابع مجهول به وسیله توابع سینک و به کمک روش هم محلی، مسئله را به یک مساله ویژه مقداری تبدیل میکنیم. در ادامه با بیان مثالهایی، دقت و سرعت این روش را با روش تفاضلات متناهی، که روشی رایج در بین فیزیکدانان است، مقایسه کردهایم. درنهایت، با توجه به جداول و محاسبات انجام شده، دقت و سرعت این روش در مقایسه با برخی از روشها، ثابت کردهایم. تمامی محاسبات با نرم افزار میپل صورت گرفته است.
Computation of the Schrodinger equation energy levels is very important in physics. For example we can use these levels to calculate the absorption coefficient and light refraction in a material as well as calculation of the interband and intersubband transition energies. Density of states of the system can also be obtained by using the energy levels. Thereafter we can determine that the system is dielectric, semiconductor or metal. There are different methods to calculate the energy levels and each of them has some advantages and some disadvantages. The asymptotic iteration method, genetic algorithm, numerov method, neural networks, transfer matrix method etc. are some of them. However calculation of the energy levels by using the Sinc method has less been studied. In this paper we consider the Sinc collocation method to calculate these energy levels. We approximate the unknown function by Sinc functions and convert the problem to the eigenvalue problem by collocation method. In sequel numerical examples are included to compare the accurately of our method with finite difference method. The results demonstrate the accuracy of our method to comparison the other methods. All computations were carried out using Maple on a personal.
[1] U. Yesilgul, Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in symmetric double semi-V-shaped quantum wells, Journal of Luminescence 132 (2012) 765 –773.
[2] C. Perssona, R. Ahujaa, A. Ferreira da Silvab, B. Johansson, First-principle calculations of optical properties of wurtzite AlN and GaN ,Journal of Crystal Growth 231 (2001) 407–414.
[3] G. H. Nie, Analysis of non-linear behaviour of imperfect shallow spherical shells on pasternak foundation by the asymptotic iteration method, International Journal of Pressure Vessels and Piping 80 (2003) 229–235.
[4] R. Saha, P. Chaudhury, S. P. Bhattacharyya, Direct solution of Schrödinger equation by genetic algorithm: test cases, Physics Letters A 291 (2001) 397–406.
[5] Z. Kalogiratou, Th. Monovasilis, T.E. Simos, Numerical solution of the two-dimensional time independent Schrodinger equation with Numerov-type methods, Journal of Mathematical Chemistry, 37 (2005) 271-279.
[6] Y. Shirvany, M. Hayati , R. Moradian, Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks, communications in Nonlinear Science and Numerical Simulation 13 (2008) 2132–2145.
[7] Z. Cao, Q. Liu, Q. Shen, X. Dou, Y. Chen, Y. Ozaki, Quantization scheme for arbitrary one-dimensional potential wells, Physical Review A, 3 (2001) 054103- 054103-4.
[8] F. Stenger, Numerical methods based on Sinc and analytic functions, New York (NY): Springer-Verlag, (1993).
[9] J. Lund, K. Bowers, Sinc methods for quadrature and differential equations, Philadelphia, (PA): SIAM, (1992).
[10] M. Dehghan, A. Saadatmandi, The numerical solution of a nonlinear system of second-order boundary value problems using the sinc-collocation method, Mathematical and Computer Modelling 46 (2007) 1434–1441.
[11] S. Sayan, R. A. Bartynski, X. Zhao, E. P. Gusev, D. Vanderbilt, M. Croft,
M. Banaszak Holl, E. Garfunkel, Valence and conduction band offsets of a ZrO2/SiOxNy/n-Si CMOS gate stack: A combined photoemission and inverse photoemission study, phys. stat. sol. (b) 241(10) (2004) 2246–2252.
[12] s. L. Chuang, D. Ahn, Optical transitions in a parabolic quantum well with an applied electric field analytical solutions, J. Appl. Phys. 65 (19S5) 2822- 2826.
[13] G. B. Arfken, H. J. Weber, F. E. Harris, Mathematical methods for physicists, A Comprehensive guide, Seventh Edison (2013).
[14] S. M. Ikhdari, physica, M. Hamzavi, R. Sever, Spectra of cylindrical quantum dots: The effect of electrical and magnetic fields together with AB flux field,Physica B: Condensed Matter 407.23 (2012) 4523-4529.
[15] H. Hassanabadi, H. Rahimov, An alternative method for spectrum of a three-electron-quantum dot,Physica B: Condensed Matter 406 (2012) 3070-3073.