جواب تحلیلی معادلات دیفرانسیل مبتنی بر روش فرا ابتکاری ترکیبی الگوریتمهای ژنتیک و بهینهسازی کلونی مورچگان
محورهای موضوعی : آمارناصر میکائیل وند 1 , اکرم جوادی 2 , حسن حسین زاده 3
1 - گروه ریاضی، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران
2 - گروه ریاضی، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران.
3 - گروه ریاضی، واحد اردبیل، دانشگاه ازاد اسلامی ، اردبیل ف ایران
کلید واژه: Differential Equations, Minimizing Dependent Error, Antinuclear Combination Planning and Genetics, Partial Differential Equations,
چکیده مقاله :
بسیاری از مسائل در زمینه های مختلف علوم کاربردی نظیر فیزیک، شیمی و اقتصاد که مربوط به بررسی تغییرات یک یا چند متغیر می شوند؛ توسط معادلات دیفرانسیل بیان می شوند. پیش بینی وضع آب و هوا، مکانیک کوانتومی، انتشار موج و دینامیک بازار سهام برخی از این نمونه هاست که حل سریع و دقیق آنها تاثیرات شگرفی در زندگی انسانها باقی می گذارد و به همین دلیل روش های متعددی برای حل معادلات دیفرانسیل پیشنهاد شده است.هدف اصلی این تحقیق، بررسی قابلیت استفاده از الگوریتم ترکیبی ژنتیک-کلونی مورچگان با رویکرد تولید جوابهای آزمایشی و بهبود آنها برای تولید جواب تحلیلی- عددی انواع مختلفی از معادلات دیفرانسیل معمولی و جزئی است. الگوریتم بهینه سازی کلونی مورچگان (ACO) یک الگوریتم مناسب دارای دقت و سرعت همگرایی بالا برای یافتن جوابهای تقریبی برای حل مسائل بهینه سازی با استفاده از تابع احتمال وابسته به میزان اثر باقیمانده از حرکت مورچه هاست. الگوریتم ژنتیک نیز یک روش بهینه-سازی مبتنی بر اپراتورهای جهش و تقاطع است که دارای منطقه جستجوی گسترده ای است که مانع از به تله افتادن الگوریتم در جواب محلی میشود. ترکیبی از این دو الگوریتم، یک الگوریتم با حداکثر کارایی را ایجاد میکند. بررسی مثالهای گوناگون در بخش پایانی مقاله سرعت و دقت بالای روش پیشنهادی را نمایش می دهد.
Many issues are expressed in terms of various applied sciences such as physics, chemistry, and economics, which are concerned with the examination of variations of one or more variables, by differential equations. The prediction of climate, quantum mechanics, wave propagation and dynamics of the stock market is some of these examples, whose quick and accurate solution will have tremendous effects on human life, and therefore several methods have been proposed for solving differential equations.The main objective of this study was to investigate the applicability of the antler colony genetic algorithm to the production of experimental solutions and improve them to produce numerical analytic-numerical solutions of various types of ordinary differential equations. An antler colony optimization algorithm (ACO) has an appropriate algorithm with high convergence accuracy and speed for finding approximate solutions for solving optimization problems using probability function dependent on the amount of residual effect of anti-movement. Genetic algorithm is also an optimization method based on mutated and intersect operators with a wide search area that prevents the algorithm from trapping in the local response. The combination of these two algorithms creates an algorithm with maximum efficiency. Examining various examples in the final section of the article will highlight the speed and accuracy of the proposed method.
[1] Peng, Y. Z. 2003 Exact solutions for some non linear partial differential equations. Physics Letters A 314, 401-408.
[2] Salzner, Y., Otto, P., and Ladik, J. 1990 Numerical solution of a partial differential equation system describing chemical kinetics and diffusion in a cell with the aid of compartmental-ization. Journal of Computational Chemistry, 11, 194-204.
[3] Culshaw, R.V., Ruan, S. 2000 A delay-differential equation model of HIV infection of CD+ 4 T-cells. Mathematical Biosciences 165, 27-39.
[4] Norberg, R. 1995 Differential equations for moments of present values in life, Insurance. Mathematics and Economics 17, 171-180.
[5] Srebrenik, S., Weinstein, H., and Pauncz, R.1973 Analytic calculation of atomic and molecular electrostatic potentials from the Poisson equation. Chem. Phys. Letters 20, 419-423.
[6] Lee, C., Lee, K., Kim, C.Ki., and Moon-Uhn, K. 1997 Variational Formulation of Poisson's Equation in Semiconductor at Quasi-Equilibrium and Its Applications, VOL. 44, NO. 9, September 1997.
[7] Perez, P., Gangnet, M., and, Blake, A. 2003 Poisson Image Editing. ACM Transactions on Graphics, 22(3), 313-318.
[8] Jean-Pierre Richard, 2003 A differential transformation approach for solving functional differential equation with multiple delays, Volume 39, Issue 10, 1667-1694.
[9] Mirzaee F., Hoseini S. F., 2017 A new collocation approach for solving systems of high order integro differential equation with variable, Applied Mathematics and Computation, Volume 311, 15, 272-282.
[10] Rudd K., Ferrari S. 2015 A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks, Neuro computing 155, 277–285.
[11] Badakhshan K. P., Vahidian Kamyad A., 2007 Numerical solution of nonlinear optimal control problems using nonlinear programming, Appl. Math. Comput. 187 (2) 511–1519.
[12] Cao. H, Kang. L, Chen. Y and Yu. J, 2010 Evolutionary Modeling of Systems of Ordinary Differential Equations with Genetic Programming, Genetic Programming and Evolvable Machines, vol.1,309-337.
[13] Iba. H, Sakamoto. E, 2012Inference of Differential Equation Models by Genetic Programming, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012),788-795.
[14] Kamali M.Z.M., Kumaresan N. and Ratnavelu K.2015 Solving differential equations with ant colony programming, Applied Mathematical Modelling 39 3150–3163.
[15] Koza. J. R, 2002 Genetic Programming: On the programming of Computer by Means of Natural Selection. MIT Press: Cambridge, MA.
[16] H. Nojavan; S. Abbasbandy; T. Allahviranloo The use of radial basis functions by variable shape parameter for solving partial differential equations, Journal of new researcher in mathematics, Volume 5, Issue 17, 2019.
[17] N. Nyamoradi; A. Razani Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects, Journal of new researcher in mathmatices, Volume 5, Issue 19, 2019.
[18] O'Neill. M and Ryan. C, 2003) Grammatical Evolution: Evolutionary Automatic Programming in arbitrary Language, volume 4 of Genetic programming. Kluwer Academic Publishers.
[19] H. Nojavan; S. Abbasbandy; T. Allahviranloo The use of radial basis functions by variable shape parameter for solving partial differential equations, Journal of new researcher in mathmatices, Volume 5, Issue 17, 2019.
[20] M.A. Ebadi; E.S. Hashemizadeh; A.H. Refahi Sheikhani, Zernike radial polynomials method for solving nonlinear singular boundary value problems arising in physiology, Journal of new researcher in mathmatices, Volume 5, Issue 19, 2019.
[21] I. Hossein Zade Shahbolaghi; R. Pourgholi; H. Dana Mazraeh; S.H. Tabasi Solving random inverse heat conduction problems using PSO and genetic algorithms, Journal of new researcher in mathmatices, Volume 5, Issue 19, 2019.