محاسبه برخی اندیس های توپولوژیکی از گراف فون نیومن منظم از حلقهZ_(p^α )
محورهای موضوعی : آمارشروین صاحبی 1 , منصوره دلدار 2
1 - گروه ریاضی، دانشکده علوم پایه، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه ریاضی، دانشکده علوم پایه، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: Zagreb indices of type one, two and three, Randic Index, Wiener Index,
چکیده مقاله :
گراف فون نیومن منظم حلقهی R ((G_Vnr (R)، گرافی است که رئوس آن همهی عضوهای حلقهی R است و دو رأس مجزای x و y در آن تشکیل یال میدهند اگر و تنها اگر x+y فون نیومن منظم باشد. اگر R یک حلقه جابجایی و یکدار باشد، عضو a در R را فون نیومن منظم گوییم هر گاه xی در R وجود داشته باشد بطوریکه a=a^2 x. مجموعه عضوهای فون نیومن منظم حلقهی R را با Vnr(R) نشان میدهیم. از نظر ریاضی شاخص توپولوژیکی یک گراف، مقدار عددی است که به آن گراف نسبت داده میشود و معرف بعضی از خواص آن میباشد. در این مقاله ابتدا درجه رئوس را برای حلقه R و تعداد یالها را در حالت های خاص را برای حلقه Z_(p^α ) ( p عدد اول) بدست آورده و سپس شاخصهای توپولوژیکی نوع اول، دوم و سوم زاگرب، رندیک، وینر، فوق وینر و وینر معکوس گراف G_Vnr (Z_(p^α )) را بر اساس درجه رئوس و فواصل آنها محاسبه میکنیم.
By the Von Neumann regular graph of R, we mean the graph that its vertices are all elements of R such that there is an edge between vertices x,y if and only if x+y is a von Neumann regular element of R, denoted by G_Vnr (R). For a commutative ring R with unity, x in R is called Von Neumann regular if there exists x in R such that a=a2 x. We denote the set of Von Neumann regular elements by V nr(R). Topological indices are the numbers that is devoted to graphs and show some of their properties. In this paper, first we obtain the degree of vertices for a ring R and the number of edges in different special cases for the ring Z_(p^α ) (p is a prime number) and then we compute Zagreb indices of type one, two and three, Randic, Wiener, Hyper Wiener and reverse Wiener of Von Neumann graph.
[1] A. Jafari Taloukolue, Sh. Sahebi, (2018).Von Neumann regular graphs associated with rings, Discrete Mathematics, Algorithms and Applications, 10(3), to be appeared.
[2] H. Wiener. (1947). Structural determination of the paraffin boiling points, J. Amer. Chem., 69, 17-20.
[3] G.H. Fath-Tabar. (2011). Old and new Zagreb indices of graphs, Match Commun.Math. Chem., 65, 79-84.
[4] I. Gutman, N. Trinajstic. (1972). Graph theory and molecular orbitals. Total -elactron energy of alternate hydrocarbons, Chem.Phys. Lett., 17, 535-538.
[5] M.Randic. (1975). On characterization of molecular branching, J.Amer. Chem. Soc., 97, 6609-6615.
[6] D.F,Anderson, A.Badawi. (2012) Von Neumann Regular and relatedElements in Commutative Rings. Algebra Colloquium. 19, 1017-1040.
[7] A.T. Balaban, D. Mills, O. Ivanciuc, S.C. Basak. (2000). Reverse Wiener indices, Croat. Chem. Acta., 73, 923-941.
[8] D.J. Klein, I. Lukovits, I. Gutman. (1995). On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci., 35, 50-52.