برنامهریزی عملیات و طراحی شبکه زنجیره تأمین حلقه بسته پایدار با در نظر گرفتن استخدام و آموزش نیروی انسانی
محورهای موضوعی : آماررضا وکیلی مطیع 1 , رضا توکلی مقدم 2 , علی بزرگی امیری 3 , فریبرز جولای 4
1 - دانشجوی دکتری مهندسی صنایع، پردیس البرز، دانشگاه تهران، ایران
2 - استاد، دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران، ایران
3 - دانشیار، دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران، ایران
4 - استاد، دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران، ایران
کلید واژه: Benders decomposition, Multi-objective optimization, Operations planning, Sustainable closed-loop supply chain,
چکیده مقاله :
مدلسازی و حل بهینه مسائل مدیریت زنجیره تأمین موجب تصمیمگیری کارا در برنامهریزی استراتژیک و عملیات زنجیره میشود که در پی آن مزیت رقابتی ایجاد میشود و قدرت زنجیره افزایش مییابد. امروزه با برنامهریزی زنجیره تأمین پایدار میتوان علاوه بر تحقق اهداف اقتصادی، اهداف و ملاحظات اجتماعی و زیستمحیطی را نیز ارضاء نمود. در این تحقیق به مدلسازی و حل مسئله برنامهریزی عملیات و طراحی شبکه زنجیره تامین حلقه بسته پایدار پرداخته میشود که در آن به استخدام و آموزش نیروی انسانی زنجیره تأمین نیز توجه میشود. ابتدا یک مدل بهینهسازی سههدفه ارائه میشود که در آن شبکه زنجیره تأمین طراحی میشود و متغیرهای استراتژیک (مثل مکانیابی و تعیین ظرفیت تسهیلات، انتخاب تکنولوژی، استخدام وآموزش نیروی انسانی ماهر و یا نیمهماهر و غیره) تعیین میشود. سپس مدل چنددورهای به منظور برنامهریزی عملیات زنجیره تامین طراحیشده ارائه میشود که در آن مقدار تولید، موجودی، عرضه، کمبود، جذب موقت نیروی انسانی و غیره در هر دوره به صورت بهینه بدست آورده میشود. در مدل استراتژیک پیشنهادی، موازنه اهداف کمینهسازی هزینههای زنجیره تامین (اقتصادی)، بیشینهسازی اشتغال (اجتماعی)، و کمینهسازی اثرات زیست محیطی، با روش از روش اپسیلون محدودیت تکامل یافته انجام میشود. همچنین الگوریتم تجزیه بندرز برای حل مسئله در ابعاد بزرگ بکار گرفته میشود. در بخش پایانی تحقیق به مطالعه عددی پرداخته میشود تا علاوه بر ارزیابی مدل و رویکردهای حل پیشنهادی، نتایج عددی تحلیلی و بینیشهای مدیریتی ارائه شود.
Modeling and optimal solving of supply chain management problems lead to efficient decision making in strategic planning and supply chain operations, resulting in a competitive advantage. Today, with the planning of a sustainable supply chain, in addition to achieving economic goals, it is possible to meet social and environmental objectives and considerations. This research deal with sustainable closed-loop supply chain network design and operations planning problem in which is human resource employment and training are considered. First, a three-objective optimization model is developed in which the supply chain network is designed and strategic variables (such as location and capacity determination, technology selection, skilled or semi-skilled employment and training, and etc.) are obtained. Then, a multi-period model is proposed supply chain operations planning in which the amount of production, inventory, shortage, temporary recruitment of manpower, etc. in each period are determined. In the proposed strategic model, a trade-off between the objectives of minimizing the cost of the supply chain (economic), maximizing employment (social), and minimizing environmental impacts is done by augmented epsilon constraint method. Also, Benders decomposition algorithm is used to solve large-scaled instances. In the final section of the research, some numerical studies are presented to provide numerical results, managerial insights and evaluating the performance of the proposed model and solution approaches.
[1] K. Devika, A. Jafarian, and V. Nourbakhsh, "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques," European Journal of Operational Research, vol. 235, no. 3, pp. 594-615, 2014.
[2] D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi, Managing The Supply Chain: Definitive Guide. Tata McGraw-Hill Education, 2004.
[3] J. Quariguasi Frota Neto, G. Walther, J. Bloemhof, J. Van Nunen, and T. Spengler, "From closed-loop to sustainable supply chains: the WEEE case," International Journal of Production Research, vol. 48, no. 15, pp. 4463-4481, 2010.
[4] S. Seuring and M. Müller, "From a literature review to a conceptual framework for sustainable supply chain management," Journal of cleaner production, vol. 16, no. 15, pp. 1699-1710, 2008.
[5] K. Govindan and H. Soleimani, "A review of reverse logistics and closed-loop supply chains: a Journal of Cleaner Production focus," Journal of Cleaner Production, vol. 142, pp. 371-384, 2017.
[6] J. Kim, B. Do Chung, Y. Kang, and B. Jeong, "Robust optimization model for closed-loop supply chain planning under reverse logistics flow and demand uncertainty," Journal of Cleaner Production, 2018.
[7] D. Battini, M. Bogataj, and A. Choudhary, "Closed loop supply chain (CLSC): economics, modelling, management and control," ed: Elsevier, 2017.
[8] H. Soleimani, K. Govindan, H. Saghafi, and H. Jafari, "Fuzzy multi-objective sustainable and green closed-loop supply chain network design," Computers & Industrial Engineering, vol. 109, pp. 191-203, 2017.
[9] R. Cruz-Rivera and J. Ertel, "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, vol. 196, no. 3, pp. 930-939, 2009/08/01/ 2009.
[10] M. S. Pishvaee, K. Kianfar, and B. Karimi, "Reverse logistics network design using simulated annealing," The International Journal of Advanced Manufacturing Technology, vol. 47, no. 1-4, pp. 269-281, 2010.
[11] M. S. Pishvaee, J. Razmi, and S. A. Torabi, "Robust possibilistic programming for socially responsible supply chain network design: A new approach," Fuzzy sets and systems, vol. 206, pp. 1-20, 2012.
[12] V. Özkır and H. Başlıgil, "Multi-objective optimization of closed-loop supply chains in uncertain environment," Journal of Cleaner Production, vol. 41, pp. 114-125, 2013.
[13] T.-S. Su, "Fuzzy multi-objective recoverable remanufacturing planning decisions involving multiple components and multiple machines," Computers & Industrial Engineering, vol. 72, pp. 72-83, 2014.
[14] K. Govindan, A. Jafarian, and V. Nourbakhsh, "Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic," Computers & Operations Research, vol. 62, pp. 112-130, 2015.
[15] R. Babazadeh, J. Razmi, M. S. Pishvaee, and M. Rabbani, "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, vol. 66, pp. 258-277, 2017/01/01/ 2017.
[16] M. Varsei and S. Polyakovskiy, "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, vol. 66, pp. 236-247, 2017.
[17] A. M. F. Fard and M. Hajaghaei-Keshteli, "A tri-level location-allocation model for forward/reverse supply chain," Applied Soft Computing, vol. 62, pp. 328-346, 2018.
[18] ا. یادگاری, ا. عالم تبریز, م. زندیه, ب. دری, "توسعه یک مدل برنامهریزی درجه دوم آمیخته با اعداد صحیح برای طراحی شبکه لجستیک حلقه بسته پویا," پژوهش های نوین در ریاضی, 1396
[19] M. Hajiaghaei-Keshteli and A. M. F. Fard, "Sustainable closed-loop supply chain network design with discount supposition," Neural Computing and Applications, pp. 1-35, 2018.
[20] N. Sahebjamnia, A. M. F. Fard, and M. Hajiaghaei-Keshteli, "Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks," Journal of Cleaner Production, 2018.
[22] G. Mavrotas, "Effective implementation of the ε-constraint method in multi-objective mathematical programming problems," Applied mathematics and computation, vol. 213, no. 2, pp. 455-465, 2009.
[23] J. Aghaei, N. Amjady, and H. A. Shayanfar, "Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method," Applied Soft Computing, vol. 11, no. 4, pp. 3846-3858, 2011.