Evaluation of the Antimicrobial Potential of Astragalus fasciculifolius Gum Extract Against Clostridium perfringens in Meatball Formulations Using Response Surface Methodology
محورهای موضوعی : Food and HealthNajmeh Khademi Pour 1 , Anousheh Sharifan 2 , Hossein Bakhoda 3
1 - Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
کلید واژه: Astragalus fasciculifolius Boiss, / Bioactive Compounds, /Response Surface Methodology, / Meatball,
چکیده مقاله :
Astragalus fasciculifolius Boiss is one of the native medicinal plants of Iran that has a special place in Iranian medicine. We investigated the phenolic compounds profile of ethanolic gum extracts, antimicrobial activity (MIC and MBC), and modeling and optimization of Clostridium perfringens growth dynamics in meat matrices. The results showed that the highest phenolic composition in the ethanolic extract was hesperidin (17.61%). Ethanolic A. fasciculifolius gum extract had antimicrobial activity. The MIC and MBC of Clostridium perfringens were reported as 156 and 78 (mg/g extract). The ethanolic gum extract caused shrinkage and changes in bacterial membranes. Dynamic modeling of bacterial growth in the meat matrix in the presence of the ethanolic A. fasciculifolius gum extract was performed as a quadratic equation. It was found that the lowest number of bacteria would be observed at 7200.8 ppm of extract, a storage time of 14.29 hours, and a storage temperature of 4.00 °C. This study showed that A. fasciculifolius gum has important active ingredients that can be used in the food, cosmetics, and drug industries.
Astragalus fasciculifolius Boiss is one of the native medicinal plants of Iran that has a special place in Iranian medicine. We investigated the phenolic compounds profile of ethanolic gum extracts, antimicrobial activity (MIC and MBC), and modeling and optimization of Clostridium perfringens growth dynamics in meat matrices. The results showed that the highest phenolic composition in the ethanolic extract was hesperidin (17.61%). Ethanolic A. fasciculifolius gum extract had antimicrobial activity. The MIC and MBC of Clostridium perfringens were reported as 156 and 78 (mg/g extract). The ethanolic gum extract caused shrinkage and changes in bacterial membranes. Dynamic modeling of bacterial growth in the meat matrix in the presence of the ethanolic A. fasciculifolius gum extract was performed as a quadratic equation. It was found that the lowest number of bacteria would be observed at 7200.8 ppm of extract, a storage time of 14.29 hours, and a storage temperature of 4.00 °C. This study showed that A. fasciculifolius gum has important active ingredients that can be used in the food, cosmetics, and drug industries.