تحلیل مطلوبیت مسیر برای عابر پیاده بر مبنای توزیع فعالیتها با استفاده از ابزار تحلیل شبکه شهری (مطالعه موردی: محدوده مرکزی شهر تهران)
محورهای موضوعی : شهرسازیراما قلمبر دزفولی 1 , نگار فرزادی مقدم 2
1 - استادیار گروه شهرسازی، واحد پردیس، دانشگاه آزاد اسلامی، پردیس، ایران.
2 - کارشناس ارشد برنامه ریزی شهری و منطقه ای، پردیس هنرهای زیبا، دانشگاه تهران
کلید واژه: چیدمان فضا, خیابانهای مرکزی تهران, مطلوبیت مسیر پیاده, ابزار تحلیل شبکه شهری(UNA), شاخص مرکزیت فعالیت,
چکیده مقاله :
امروزه چنانچه خیابانها، فعالیتهای کافی و جاذب برای عابر پیاده نداشته باشند گامهای بعدی برای تشویق شهروندان به پیادهروی در معابر با مشکل مواجه خواهد شد. در این میان افزونهتحلیل شبکه شهری نرمافزار ARCGIS قابلیتهایی برای محاسبه سنجههای کیفیت دسترسی روی شبکه معابر ارائه نموده که میتواند در ارزشگذاری معبر با توجه به فعالیتهای پیرامونی، برای جذابیت پیادهروی مورداستفاده قرار گیرد. این پژوهش سعی بر آن دارد که از طریق ابزار تحلیل شبکه شهری،شاخص مرکزیت فعالیتیقطعه معابر شهری را در محدوده مرکزی شهر تهران، محاسبه و بصریسازی نماید. نتایج این تحلیل نشان داد که نهتنها در مرکز شهر تهران تحت تأثیر عملکردهای خیابانهای ولیعصر، انقلاب و جمهوری، شبکهای بههمپیوسته از قطعه مسیرهایی با مرکزیت فعالیتی بالا وجود دارد بلکه با تغییراتی اندک در کارکردها میتوان به ایجاد شبکههای بههمپیوسته جدید و مطلوب برای پیادهروی نیز دستیافت.
Nowadays, encouraging people to walk in the urban streets is not possible without considering attractive activities for pedestrians. Analyzing activities in the urban networks needs to determine complex parallel spatial relationships between different buildings, public spaces, and routes that connect them. In this way, urban designers and planners have started to use network- based models which analysis numerous relationships in urban space and allow the experts to use that information in urban decision making. In this way the Urban Network Analysis Toolbox (UNA) – an open-source and free plug-in for ArcGIS – provides abilities for calculating parameters of accessibility in the road network. This solution can be used for evaluating pedestrian paths based on around activities of the network. UNA toolbox, models the built environment using three basic elements: edges, representing paths along which travelers can navigate; nodes, representing the intersections where two or more edges intersect; and buildings, representing the locations where traffic from streets enters into indoor environments or vice versa. Buildings can be replaced by any other point locations on the network. This paper tries to calculate and visualize the centrality indicator of activities in the road segments, in the central area of Tehran. The Centrality Tools of ArcGIS toolbox can be used to compute five types of graph analysis measures on spatial networks: Reach; Gravity; closeness; betweenness and straightness. Respect to the literature reviews, activities of a street as a public space, influence on walkability. Theoretical framework of this research was focused on space syntax theory and develop the concept which emphasized structure of network integration can be influenced on activity distribution. Therefore, in the first step, based on theoretical framework, the point of interest layer, which is generated by Tehran Municipality, was applied to select 50 layers of the retail activities and public interests, which are more attractive for pedestrians. Then the UNA toolbox was run to calculate the centrality indicator of each activity point. Then, generated value of each point was assigned spatially to the nearest road segment. Finally, value for centrality of activities of each road segments were calculated, and the score of each road was determined. Finally, roads based on total centrality score classified and visualized with mapping in ArcGIS. The results show that there are lots of roads in central districts of Tehran that have connected paths with high centrality of attraction activities for pedestrians. For example, in this case-study, ValiAsre street,enghelab street, and Jomhoury street have the most scores in centrality indicator. Also with Changing some land uses, new connected and integrated paths could be generated which can enhance walking interests. For example, Imam-Khomeini Street has much potential to transform to attractive path for walkability with changing some activities, especially the segment between 30Tir Street and HasanAbad. From the technical implications, findings of this research shows that applying this approach provides better recognition of the high potential urban networks to enhance livability and can be used to designing and planning livable-oriented spaces, especially for regeneration the central business districts and deteriorated areas.
1. بحرینی، سیدحسین؛ و تقابن، سوده. (1390). آزمون کاربرد روش چیدمان فضا در طراحی فضاهای سنتی شهری، نمونه موردی: طراحی محور پیاده امامزاده قاسم. هنرهای زیبا، 48، 18-5.
2. پیلهور، علی اصغر؛ و عطایی، سینا؛ و زارعی، عبدالله. (1391). بررسی تأثیر میان کنش فضایی بر تعادل فضایی در ساختار شهری بجنورد با استفاده از فن چیدمان فضا. پژوهشهای جغرافیای انسانی، 79، 102-87.
3. خستو، مریم؛ و سعیدی رضوانی، نوید. (1389). عوامل مؤثر بر سرزندگی فضاهای شهری (خلق یک فضای شهری سرزنده با تکیه بر مفهوم مرکز خرید پیاده. هویت شهر، 4(6)، 74-63.
4. رصدخانه شهری تهران. (1396). رصد وضعیت شهرسازی تهران، نظام قطعهبندی و کاربری زمین، جلد اول. تهران: انتشارات سازمان فناوری اطلاعات و ارتباطات شهرداری تهران.
5. ریسمانچیان، امید؛ و بل، سایمون. (1389). شناخت کاربردی روش چیدمان فضا در درک پیکرهبندی فضایی شهرها. نشریه هنرهای زیبا، معماری و شهرسازی، 43، 56-49.
6. شیعه، اسماعیل؛ حبیبی، کیومرث؛ پیرایه گر، میلاد. (1392). تبیین شاخصهای جانمایی پیاده راههای شهری براساس اهداف توسعه پایدار اجتماعی با استفاده از روش ANP. هویت شهر، 9 (22)، 30-19.
7. عباس زادگان، مصطفی. (1381). طراحی شهری: روش چیدمان فضا در فرآیند طراحی شهری با نگاهی به شهر یزد. مدیریت شهری، 9، 64-75.
8. کریمی مشاور، مهرداد؛ و نگین تاجی، صمد. (1391). طراحی پیاده راهها در شهر تهران. دانش شهر، 123، 10-6.
9. معینی، سید محمد مهدی. (1385). افزایش قابلیت پیاده مداری، گامی بهسوی شهری انسانیتر، نشریه هنرهای زیبا، 27، 16-5.
10. Hillier, B. (1996). Space in the machine. Cambridge: Cambridge university press.
11. Hillier B. & Hanson J. (1984). The Social Logic of Space. Cambridge: Cambridge University Press.
12. Hillier, B., & Vaughan, L. (2007). The city as one thing. Progress in Planning, 67(3), 205-230.
13. Kang, C. D. (2015). The effects of spatial accessibility and centrality to land use on walking in Seoul, Korea. Cities, 46, 94-103.
14. Offenhuber, D., & Ratti, C. (2014). Decoding the city: Urbanism in the age of big data. Birkhäuser.
15. Ozbil, A., Peponis, J., & Stone, B. (2011). Understanding the link between street connectivity, land use and pedestrian flows. Urban Design International, 16 (2), 125-141.
16 .Sadahiro, Y. (Ed.). (2008). Spatial data infrastructure for urban regeneration (Vol. 5). Berlin: Springer Science & Business Media.
17. Sevtsuk, A. (2013). Networks of the built environment. De coding the City–How Big Data Can Change Urbanism, Birkhäuser, 143-159.
18. Sevtsuk, A., Mekonnen, M. (2012). Urban Network Analysis Toolbox. International Journal of
Geomatics and Spatial Analysis, 22(2), 287-305.