مطالعه تأثیر محلول پاشی تنظیمکنندههای رشد گیاهی بر عملکرد و خصوصیات فیزیولوژیکی و بیوشیمیایی ذرت دانه ای تحت رژیم های مختلف آبیاری
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیمینا نجفی ساعتلو 1 , مهدی تاج بخش 2 , مهدی قیاسی 3
1 - دانشجوی سابق دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ایران.
2 - گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
3 - دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ایران.
کلید واژه: آنزیم¬های آنتیاکسیدانی, تغذیه برگی, سالیسیلیک اسید, سولفاتروی, عصاره جلبک دریایی, ماده هومیوپاتی.,
چکیده مقاله :
بهمنظور بررسی پاسخهای فیزیولوژیکی و بیوشیمیایی ذرت دانه ای تحت رژیم های مختلف آبیاری و محلول پاشی تنظیمکنندههای رشد گیاهی، آزمایشی بهصورت فاکتوریل در قالب طرح بلوک های کامل تصادفی در سه تکرار طی دو سال زراعی 1397 و 1398 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه ارومیه اجرا شد. رژیم های آبیاری شامل: D0: بدون تنش (آبیاری در ظرفیت زراعی)، D1: تنش ملایم (آبیاری در 75% ظرفیت زراعی) و D2: تنش شدید (آبیاری در 50% ظرفیت زراعی) و محلولپاشی در پنج سطح شامل محلول هومیوپاتی اوره (C30 10درصد)، عصاره جلبکدریایی، سالیسیلیکاسید ۴۰۰ میلیگرم در لیتر، سولفاتروی ۳ گرم در لیتر و عدم مصرف محلولپاشی بهعنوان شاهد بود. نتایج نشان داد که محتوای قندهای محلول و فعالیت آنزیم¬های آنتیاکسیدانی (کاتالاز، پراکسیداز و سوپراکسیددیسموتاز) با افزایش شدت تنش خشکی، افزایش معنی داری یافت و محلول پاشی تنظیمکنندههای رشدی نیز منجربه افزایش بیشتر این صفات گردید. رنگیزه های فتوسنتزی با افزایش تنش خشکی کاهش معنی داری نسبت به شرایط بدونِ تنش نشان دادند، بااینوجود محلول پاشی باعث افزایش معنیداری در محتوای رنگیزه های فتوسنتزی نسبت به تیمار شاهد شد. همچنین، پارامترهای نشانگر تنش اکسیداتیو مانند غلظت پرولین و محتوای مالوندیآلدئید با وجود افزایش در شرایط تنش خشکی، بهواسطه محلول پاشی تنظیمکنندههای رشد کاهش معنیداری نسبت به تیمار شاهد تحت تنش شدید و ملایم نشان دادند. باتوجه به نتایج بهدستآمده محلول پاشی تنظیمکنندههای رشد گیاهی می تواند با حذف گونههای اکسیژن فعال و مضر که با کاهش محسوس محتوای مالوندیآلدئید در این گیاهان نشان داده شد، تحمل گیاهان به تنش خشکی را بهبود بخشید. محلولپاشی عصاره جلبکدریایی بهترتیب منجربه افزایش 21، 43 و 30 درصدی در وزن هزاردانه (2/264 گرم در مترمربع)، عملکرد دانه (11997 کیلوگرم در هکتار) و عملکرد بیولوژیک (32458 کیلوگرم در هکتار) در مقایسه با شاهد شد. نتایج نشان داد محلول پاشی تنظیم کننده های رشدی با بهبود فعالیت آنزیمهای آنتیاکسیدانی و کاهش تنش اکسیداتیو توانست تأثیر منفی تنش خشکی بر محصول ذرت را کاهش دهد و منجربه افزایش درنهایت بهبود صفات رشدی و عملکرد گردید.
This research was carried out to evaluate the physiological and biochemical responses of maize under different irrigation regimes and foliar application of plant growth regulators (PGRs). The present study was carried in Research Farm of Ur¬mia University throughout tow growing seasons. The experiment was carried out in a Factorial randomizes complete block design with three replications. Three level of irrigation regimes were: without stress (100% of field capacity), mild stress (75% field capacity) and sever stress (50% field capacity) and foliar application were included: (Urea homeopathy, seaweed extract, salicylic acid, zinc sulfate and no foliar spraying as control). Results showed that the content of soluble sugars and the activity of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) increased significantly with increasing stress intensity and foliar application of plant growth regulators led to a further increase in these traits. Photosynthetic pigments showed a significant decrease compared to non-stress conditions with increasing drought stress. However, foliar application of PGRs caused a significant increase in the content of photosynthetic pigments. Furthermore, due to foliar application of PGRs, oxidative damage indicating parameters such as proline concentration and MDA content showed a significant decrease compared to the control treatment under severe and mild stress. Foliar application of seaweed extract led to 21, 43 and 30% increase in 1000 seed weight (264.2 g.m-2), seed yield (11997 kg.ha-1) and biological yield (32458 kg.ha-1), respectively compared to the control treatment. According to the obtained results, foliar application of plant growth regulators can improve maize tolerance to drought stress throughout eliminating harmful and reactive oxygen species, which has been shown by a significant reduction in MDA content in these plants.
• Adewale, S.A., R.O. Akinwale, M.A.B. Fakorede, and B. Badu-Apraku. 2018. Genetic analysis of drought-adaptive traits at seedling stage in early-maturing maize inbred lines and field performance under stress conditions. Euphytica. 214(8): 1-18.
• Aebi, H. 1984. Catalase in vitro. Methods in enzymology. Academic Press. 105: 121-126.
• Afshari, M., A. Naderi, M. Mojadam, L.A.C.K. Shahram, and M. Alavifazel. 2020. Zinc and iron-mediated alleviation water deficiency of maize by modulating antioxidant metabolism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 48(2): 989-1004.
• Ahammed, G.J., X. Li, Q. Mao, H. Wan, G. Zhou, and Y. Cheng. 2020. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. Physiologia Plantarum. 172(2): 885-895.
• Ahmad, I., B. Ahmad, K. Boote, and G. Hoogenboom. 2020. Adaptation strategies for maize production under climate change for semi-arid environments. European Journal of Agronomy. 115: 126040.
• Akladious, S.A., and H.I. Mohamed. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 236: 244-250.
• Akram, N.A., M. Iqbal, A. Muhammad, M. Ashraf, F. Al-Qurainy, and S. Shafiq. 2018. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma Journal. 255(1): 163-174.
• Akter, S., M.G. Rasul, M. Zakaria, M.M. Sarker, I.S. Nila, S. Dutta, M.M. Haque, and M.M. Rohman. 2018. Effect of polyamine on pigmentation, reactive oxidative species and antioxidant under drought in maize (Zea mays L.). Turkish Journal of Agriculture-Food Science and Technology. 6(7): 799-811.
• Almeida, G.M., Silva, A.A.D., Batista, P.F., Moura, L.M.D.F., Vital, R.G. and Costa, A.C., 2020. Hydrogen sulfide, potassium phosphite and zinc sulfate as alleviators of drought stress in sunflower plants. Ciência e Agrotecnologia, 44, https://doi.org/10.1590/1413-7054202044006320.
• Amin, A.A., A.A. El-Kader, M.A. Shalaby, F.A. Gharib, E.S.M. Rashad, and J.A.T. Da-Silva. 2013. Physiological effects of salicylic acid and thiourea on growth and productivity of maize plants in sandy soil. Communications in Soil Science and Plant Analysis. 44(7): 1141-1155.
• Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances. 27(1): 84-93.
• Azmat, A., Yasmin, H., Hassan, M.N., Nosheen, A., Naz, R., Sajjad, M., Ilyas, N. and Akhtar, M.N., 2020. Co-application of bio-fertilizer and salicylic acid improves growth, photosynthetic pigments and stress tolerance in wheat under drought stress. PeerJ, 8. DOI 10.7717/peerj.9960
• Basu, S., V. Ramegowda, A. Kumar, and A. Pereira. 2016. Plant adaptation to drought stress. F1000 Research, 5.
• Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1): 205-207.
• Batista, P.F., C. Muller, A. Merchant, D. Fuentes, R.D.O. Silva-Filho, F.B. Da-silva, and A.C. Costa. 2020. Biochemical and physiological impacts of zinc sulphate, potassium phosphite and hydrogen sulphide in mitigating stress conditions in soybean. Physiologia Plantarum. 168(2): 456-472.
• Beigzadeh, S., A. Maleki, M. Mirzaee, A. Rangin, and A. Khorgami. 2020. Effects of salicylic acid and seaweed (Ascophyllum nodosum) extracts application on some physiological traits of white bean (Phaseolus lanatus L.) under drought stress conditions. Journal of Crop Ecophysiology. 14(1 (53)): 21-44. (In Persian)
• Brennan, R.F. 1991. Effectiveness of zinc sulfate and zinc chelate as foliar sprays in alleviating zinc deficiency of wheat grown on zinc-deficient soils in Western Australia. Australian Journal of Experimental Agriculture. 31: 8314.
• Bulgari, R., G. Franzoni, and A. Ferrante. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy Journal. 9(6): 306.
• Capra, R.S., A.S. Gratão, G.B. Freitas, and M.N. Leite. 2014. Preparados homeopáticos e ambiente de cultivo na produção e rendimento de quercetina em carqueja [Baccharis trimera (Less) DC.]. Revista Brasileira De Plantas Medicinais. 16(3): 566-573.
• Carpenter-Boggs, L., A.C. Kennedy, and J.P. Reganold. 2000. Organic and biodynamic management effects on soil biology. Soil Science Society of America Journal. 64(5): 1651-1659.
• Chaves, M.M. 1991. Effects of water deficits on carbon assimilation. Journal of Experimental Botany. 42: 1–16.
• Chen, Y.E., J.M. Cui, G.X. Li, M. Yuan, Z.W. Zhang, S. Yuan, and H.Y. Zhang. 2016. Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biologia Plantarum. 60(1): 139-147.
• Couée, I., C. Sulmon, G. Gouesbet, and A. El-Amrani. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany. 57(3): 449-459.
• Daneshmand, A., A. Shirani-Rad, G.H. Noormohamadi, G.H. Zarei, and J. Daneshian. 2008. Study oil seed and protein of two rapeseed (Brassica napus L.) and relation of them with oil yield and protein yield. Dynamic Agriculture. 5(3 (Agronomy)): 295-314. (In Persian).
• De Souza Simões, L., D.A. Madalena, A.C. Pinheiro, A. Teixeira, A.A. Vicente, and Ó.L. Ramos. 2017. Micro-and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science. 243: 23-45.
• Demidchik, V. 2015. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany. 109: 212-228.
• Desingh, R., and G. Kanagaraj. 2007. Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. General and Applied Plant Physiology. 33(3-4): 221-234.
• Devi, R.G., Pandiyarajan, V. and Gurusaravanan, P., 2012. Alleviating effect of IAA on salt stressed Phaseolus mungo (L.) with reference to growth and biochemical characteristics. Recent Research in Science and Technology, 4(3).22-24
• Elansary, H.O., J. Norrie, H.M. Ali, M.Z. Salem, E.A. Mahmoud, and K. Yessoufou. 2016. Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts. BMC Complementary and Alternative Medicine. 16(1): 1-11.
• Elgamaal, A.A., and H.F. Maswada. 2013. Response of three yellow maize hybrids to exogenous salicylic acid under two irrigation intervals. Asian Journal of Crop Science. 5(3): 264-274.
• El-Hawary, M.M. and Nashed, M.E., 2019. Effect of foliar application by some antioxidants on growth and productivity of maize under saline soil conditions. Journal of Plant Production, 10(2), pp.93-99.
• Elmaz, Ö., H. Cerit, M. Özçelik, and S. Ulaş. 2004. Impact of organic agriculture on the environment. Fresenius Environmental Bulletin. 13(11A): 1072-1078.
• Esfandiari, E., M. Abdoli, S.B. Mousavi, and B. Sadeghzadeh. 2016. Impact of foliar zinc application on agronomic traits and grain quality parameters of wheat grown in zinc deficient soil. Indian Journal of Plant Physiology. 21(3): 263-270.
• Fardus, J., M.A. Matin, M. Hasanuzzaman, M.S. Hossain, S.D. Nath, M.A. Hossain, M.M. Rohman, and M. Hassanuzzman. 2017. Exogenous salicylic acid-mediated physiological responses and improvement in yield by modulating antioxidant defense system of wheat under salinity. Notulae Scientia Biologicae.9(2): 219-232.
• Farouk, S., and A.M.S.A. Qados. 2013. Osmotic adjustment and yield of cowpea in response to drought stress and chitosan. Indian Journal of Applyed Research. 3(10): 1-6.
• Farouk, S., S.A. Arafa, and R.M. Nassar. 2018. Improving drought tolerance in corn (Zea mays L.) by foliar application with salicylic acid. International Journal of Environmental. 7(3): 104-123.
• Ghazi, D. 2017. Impact of drought stress on maize (Zea mays) plant in presence or absence of salicylic acid spraying. Journal of Soil Sciences and Agricultural Engineering. 8(6): 223-229.
• Ghiyasi, M., R. Amirnia, and M. Fazelimanesh. 2017. Improving yeild and quality of black cumin (Nigella sativa L.): Organic fertiliser extract foliar application approach. Oxidation Communications. 40(3): 1254-1264.
• Goñi, O., P. Quille, and S. O'Connell. 2018. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry. 126: 63-73.
• Habibi, G. 2012. Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis. 56(1): 57-63.
• Hafez, E.M. and M.F. Seleiman. 2017. Response of barley quality traits, yield and antioxidant enzymes to water-stress and chemical inducers. International Journal of Plant Production. 11(4): 477-490.
• Hayat, S., Q. Hayat, M.N. Alyemeni, A.S. Wani, J. Pichtel, and A. Ahmad. 2012. Role of proline under changing environments: a review. Plant Signaling and Behavior. 7(11): 1456-1466.
• Heydari-Soreshjani, S., M. Shayannejad, M. Naderi, and B. Haghighati. 2015. Effect of different levels of irrigation on qualitative and quantitative properties of corn (Cultivar NS) and determination of the optimum depth of irrigation in water shortage conditions. JWSS. 19(73): 125-138. (In Persian).
• Hosseinian, S., C. Maute, F. Rahimi, C. Maute, M. Hamedi, and F. Mirzajani. 2020. The influence of ultra-high diluted compounds on the growth and the metabolites of Oriza sativa L. International Journal of High Dilution Research. 19(1-2): 39-55.
• Hussain, H.A., S. Men, S. Hussain, Q. Zhang, U. Ashraf, S.A.I. AnjumAli, and L. Wang. 2020. Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants. 9(6): 720.
• Hussain, M., M.A. Malik, M. Farooq, M.Y. Ashraf, and M.A. Cheema. 2008. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal of Agronomy and Crop Science. 194(3): 193-199.
• Jithesh, M.N., P.S. Shukla, P. Kant, J. Joshi, A.T. Critchley, and B. Prithiviraj. 2019. Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. Journal of Plant Growth Regulation. 38(2): 463-478.
• Kareem, F., H. Rihan, and M. Fuller. 2017. The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. Agriculture Research Technology (Open Access). 9(4): 555768.
• Karimi, R., H. Hadi, and M. Tajbakhsh. 2016. Forage yield of sorghum under water deficit and foliar application of zinc sulphate and salicylic acid. Journal of Agricultural Science. 26(2): 169-187. (In Persian)
• Karimi, S., S.A.M.M. Sanavy, S. Ghanehpoor, and H. Keshavarz. 2016. Effect of foliar zinc application on yield, physiological traits and seed vigor of two soybean cultivars under water deficit. Notulae Scientia Biologicae. 8(2): 181-191.
• Klessig, D.F., H.W. Choi, and D.M.A. Dempsey. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant-Microbe Interactions. 31(9): 871-888.
• Koyro, H.W. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany. 56(2): 136-146.
• Lang-Mladek, C., O. Popova, K. Kiok, M. Berlinger, B. Rakic, W. Aufsatz, C. Jonak, M.T. Hauser, and C. Luschnig. 2010. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Molecular Plant. 3(3): 594-602.
• Lawlor, D.W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment. 25(2): 275-294.
• Layek, J., A. Das, G.I. Ramkrushna, A. Ghosh, A.S. Panwar, R. Krishnappa, and S.V. Ngachan. 2016. Effect of seaweed sap on germination, growth and productivity of maize (Zea mays) in North Eastern Himalayas. Indian Journal of Agronomy. 61(3): 354-359.
• Leopold, A.C., W.Q. Sun, and I. Bernal-Lugo. 1994. The glassy state in seeds: analysis and function. Seed Science Research. 4(3): 267-274.
• Li, T., Y. Hu, X. Du, H. Tang, C. Shen, and J. Wu. 2014. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLOS one. 9(10): e109492.
• Liu, K., S.B. Zhou, X.Y. Wu, F. Liu, and G.X. Li. 2015. Effects of irradiance on the photosynthetic traits, antioxidative enzymes, and growth of Cryptotaenia japonica. Biologia Plantarum. 59(3): 521-528.
• Lotter, D.W. 2003. Organic agriculture. Journal of Sustainable Agriculture. 21(4): 59-128.
• Loutfy, N., M. Azooz, and M.F. Abou-Alhamd, 2020. Exogenously-applied salicylic acid and ascorbic acid modulate some physiological traits and antioxidative defense system in Zea mays L. seedlings under drought stress. Egyptian Journal of Botany. 60(1): 313-324.
• Loutfy, N., M.A. El-Tayeb, A.M. Hassanen, M.F. Moustafa, Y. Sakuma, and M. Inouhe. 2012. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). Journal of Plant Research. 125(1): 173-184.
• Ma, D., D. Sun, C. Wang, H. Ding, H. Qin, J. Hou, X. Huang, Y. Xie, and T. Guo. 2017. Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science. 8: 860.
• Maruri-López, I., N.Y. Aviles-Baltazar, A. Buchala, and M. Serrano. 2019. Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science. 10: 423.
• Masayasu, M., and Y. Hiroshi. 1979. A simplified assay method of superoxide dismutase activity for clinical use. Clinica Chimica Acta. 92(3): 337-342.
• Meloni, D.A., M.A. Oliva, C.A. Martinez, and J. Cambraia. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany. 49(1): 69-76.
• Mohamed, H.I., and H.H. Latif. 2017. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiology and Molecular Biology of Plants. 23(3): 545-556.
• Mohammadi, M., K. Ghassemi-Golezani, S. Zehtab-Salmasi, and S. Nasrollahzade. 2016. Assessment of some physiological traits in spring safflower (Carthamus tinctorius L.) cultivars under water stress. International Journal of Life Sciences. 10(1): 58-64.
• Mohammadkhani, N., and R. Heidari. 2008. Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Applyed Science Journal. 3(3): 448-453.
• Moharramnejad, S., O. Sofalian, M. Valizadeh, A. Asghari, M.R. Shiri, and M. Ashraf. 2019. Response of maize to field drought stress: oxidative defense system, osmolytes’ accumulation and photosynthetic pigments. Pakistan Journal of Botany. 51(3): 799-807.
• Mukami, A., A. Ngetich, C. Mweu, R.O. Oduor, M. Muthangya, and W.M. Mbinda. 2019. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiology and Molecular Biology of Plants. 25(4): 837-846.
• Nandini, Y., and S. Samir. 2016. Reactive oxygen species, oxidative stress and ROS scavenging system in plants. Journal of Chemical and Pharmaceutical Research. 8(5): 595-604.
• Niakan, M., A. Habibi, and M. Ghorbanli. 2012. Study of pix regulator effect on physiological responses in cotton plant. Annals of Biological Research. 3(11): 5229-5235.
• Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 95(2): 351-358.
• Okhchelar, R.A., R. Amirnia, M. Tajbakhsh, and M. Ghiyasi. 2018. The effect of foliar spraying of organic fertilizers extracts on morphological traits and quantitative and qualitative yields of six moldavian balm (Dracocephalum Moldavica L.) ecotypes. Applied Field Crops Research (Pajouhesh and Sazandegi). 31(2 (119)): 73-91. (In Persian).
• Ortas, I., N. Sari, Ç. Akpinar, and H. Yetisir. 2011. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae. 128(2): 92-98.
• Per, T.S, N.A. Khan. P.S. Reddy, A. Masood, M. Hasanuzzaman, M.I.R. Khan, and N.A. Anjum. 2017. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry. 115: 126-140.
• Pereira, M.M.A., Martins, A.D., Morais, L.C., Dória, J., Cavalcanti, V.P., Rodrigues, F.A., Pasqual, M. and Luz, J.M.Q., 2019. The Potential of Agro-homeopathy Applied to Medicinal Plants-A Review. Journal of Agricultural Science, 11(4), pp.500-506.
• Petrache, A.M., Falup, V., Micle, S., Pop, V.C., Scheau, C., Cosovanu, M., Morar, T. and Luca, E., 2020. Organic treatments for the control of Mycosphaerella fragariae infection in the ecological crop system of Fragaria vesca. AGRICULTURA. 113:1-2. https://doi.org/10.15835/agrisp.v113i1-2.13812.
• Razmi, N., A. Ebadi, J. Daneshian, and S. Jahanbakhsh. 2017. Salicylic acid induced changes on antioxidant capacity, pigments and grain yield of soybean genotypes in water deficit condition. Journal of Plant Interactions. 12(1): 457-464.
• Razmjoo, S. 1997. Manual analysis of fruit and vegetable products. 9th. ed. Tata Mc Graw Hill, New Delhi. :49.
• Sabir, A., and G. Sari. 2019. Zinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition in grapevines (Vitis vinifera L.). Scientia Horticulturae. 244: 61-67.
• Sadeghipour, O. 2018. Drought tolerance of cowpea enhanced by exogenous application of methyl jasmonate. International Journal of Modern Agriculture. 7(4): 51-57.
• Saeger, J., S. Van-Praet, D. Vereecke, J. Park, S. Jacques, T. Han, and S. Depuydt. 2019. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. Journal of Applied Phycology. 1-25.
• Santos, F.M., L.E. Monfort, D.M. Castro, J.E. Pinto, M. Leonardi, and L. Pistelli. 2011. Characterization of essential oil and effects on growth of Verbena gratissima plants treated with homeopathic phosphorus. Natural Product Communications. 6(10): 1934578X1100601023.
• Shafiq, S., N.A. Akram, and M. Ashraf. 2015. Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Scientia Horticulturae, 185: 68-75.
• Shafiq, S., N.A. Akram, and M. Ashraf. 2019. Assessment of physio-biochemical indicators for drought tolerance in different cultivars of maize (Zea mays L.). Pakistan Journal of Botany. 51(4): 1241-1247.
• Shafiq, S., N.A. Akram, M. Ashraf, and A. Arshad. 2014. Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiologiae Plantarum. 36(6): 1539-1553.
• Shah-Rossi, D., P. Heusser, and S. Baumgartner. 2009. Homeopathic treatment of Arabidopsis thaliana plants infected with Pseudomonas syringae. The Scientific World Journal. 9: 320-330.
• Sharghi, F., and E. Khalilvand-Behrouzyar. 2019. Effect of nano-TiO2 and salicylic acid foliar application on some biochemical traits of corn 704 single cross under water regimes. Journal of Crop Ecophysiology. 13(3) 51: 413-430. (In Persian)
• Sharma, A., B. Shahzad, V. Kumar, S.K. Kohli, G.P.S. Sidhu, A.S. Bali, N. Handa, D. Kapoor, R. Bhardwaj, and B. Zheng. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. 9(7): 285.
• Sharma, A., G.P.S. Sidhu, F. Araniti, A.S. Bali, B. Shahzad, D.K. Tripathi, M. Brestic, M. Skalicky, and M. Landi. 2020. The role of salicylic acid in plants exposed to heavy metals. Molecules. 25(3): 540.
• Shemi, R., R. Wang, E.S.M. Gheith, H.A. Hussain, S. Hussain, M. Irfan, L. Cholidah, K. Zhang, S. Zhang, and L. Wang. 2021. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Scientific Reports. 11(1): 1-14.
• Sheteiwy, M.S., D. Gong, Y. Gao, R. Pan, J. Hu, and Y. Guan. 2018. Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environmental and Experimental Botany. 153: 236-248.
• Shukla, P.S., K. Shotton, E. Norman, W. Neily, A.T. Critchley, and B. Prithiviraj. 2018. Seaweed extract improves drought tolerance of soybean by regulating stress-response genes. AoB Plants. 10(1): plx051.
• Simões, L., D.A. Madalena, A.C. Pinheiro, J.A. Teixeira, A.A. Vicente, and O.L., Ramos, 2017. Micro-and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, pp.23-45.
• Sofy, M.R. 2015. Application of salicylic acid and zinc improves wheat yield through physiological processes under different levels of irrigation intervals. International Journal of Plant Research. 5: 136-156.
• Sohag, A.A.M., M.D.Tahjib-Ul-Arif, M. Brestic, S. Afrin, M.A. Sakil, M.T. Hossain, M.A. Hossain and M.A. Hossain, 2020. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ, 66(1), pp.7-13.
• Taiz, L., and E. Zeiger. 2006. Plant physiology 4th Ed, Sinauer Associates Inc. Publishers, Massachusetts.
• Tajbakhsh, M., and M. Ghiyasi. 2017. Organic agriculture. Publication of Urmia University. (In Persian)
• Talaat, N.B., B.T. Shawky, and A.S. Ibrahim. 2015. Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany. 113: 47-58.
• Van-Assche, F., C. Cardinaels, and H. Clijsters. 1988. Induction of enzyme capacity in plants as a result of heavy metal toxicity: Dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environmental Pollution Journal. 52(2): 103-115.
• Verdi, R., O.E.L. Harthmann., R.J. Debarba., A. Giesel, and C. Parizotto. 2016. Desempenho de Ocimum basilicum L. sob efeitos de preparados homeopáticos. Cadernos de Agroecologia. 11(2).
• Wang, Y., L. Li, S. Tang, J. Liu, H. Zhang, H. Zhi, G. Jia, and X. Diao. 2016. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genetics. 17(1): 1-16.
• Xiao, X., X. Xu, and F. Yang. 2008. Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica. 42(5): 705-719.
• Yadavi, A., R.S. Aboueshaghi, M.M. Dehnavi, and H. Balouchi. 2014. Effect of micronutrients foliar application on grain qualitative characteristics and some physiological traits of bean (Phaseolus vulgaris L.) under drought stress. Indian Journal of Fundamental and Applied Life Sciences. 4(4): 124-131.
• Yang, S.L, K. Chen, S.S. Wang, and M. Gong. 2015. Osmoregulation as a key factor in drought hardening-induced drought tolerance in Jatropha curcas. Biologia Plantarum. 59(3): 529-536.
• Zafar, S., M. Nasri, H.R.T. Moghadam, and H. Zahedi. 2014. Effect of zinc and sulfur foliar applications on physiological character ristics of sunflower (Helianthus annuus L.) under water deficit stress. Internationa Journal of Bioscience. 5(12): 87-96.
• Zhang, Z.L. 1990. Experimental Guidebook to Plant Physiology. Higher Education Press, Beijing.
