تحليل طيفي آلودگي آبهاي سطحي با استفاده از شاخصهاي طيفي NDWI، WQI و WPI (مطالعه موردي: تالاب ميقان استان مرکزي)
محورهای موضوعی : مدیریت منابع آب
هادی لطفی
1
,
امیرحسین محمدی
2
,
مهدی فیض اله پور
3
1 - دانشجوي کارشناسي جغرافيا، گروه جغرافيا، دانشکده علوم انساني، دانشگاه زنجان، زنجان، ايران.
2 - دانشجوي کارشناسي جغرافيا، گروه جغرافيا، دانشکده علوم انساني، دانشگاه زنجان، زنجان، ايران.
3 - دانشيار، گروه جغرافيا، گروه جغرافيا، دانشکده علوم انساني، دانشگاه زنجان، زنجان، ايران.
کلید واژه: آلودگي آب, تالاب ميقان, پايش زيست محيطي, سنجش از دور, کيفيت آب,
چکیده مقاله :
زمينه و هدف: تالابها بهعنوان زيستبومهاي حساس و پويا، نقشي اساسي در پايداري محيطزيست، تنظيم چرخههاي اکولوژيکي، تعديل اقليمهاي محلي و تأمين منابع آبي حياتي دارند. اين اکوسيستمها علاوه بر حفظ تنوع زيستي، در کنترل سيلابها، تغذيه آبهاي زيرزميني و بهبود کيفيت هوا نيز مؤثر هستند. پژوهش حاضر با هدف بررسي و پايش تغييرات سطح آب و کيفيت زيستمحيطي تالاب ميقان در بازه زماني ۲۰۰۰ تا ۲۰۲۴ انجام شده است. در اين مطالعه، از دادههاي سنجش از دور و شاخصهاي طيفي مرتبط با آب و پوشش سطحي بهمنظور تحليل تغييرات مکاني و زماني تالاب بهره گرفته شده تا روندهاي احتمالي تخريب يا بهبود شرايط زيستمحيطي اين پهنه آبي شناسايي و ارزيابي شود.
روش پژوهش: در اين پژوهش از دادههاي ماهوارهاي سري زماني لندست ۷، ۸ و ۹ در بازه زماني ۲۰۰۰ تا ۲۰۲۴ بهمنظور بررسي تغييرات سطح و کيفيت آب تالاب استفاده گرديد. تصاوير ماهوارهاي پس از انجام تصحيحات هندسي و راديومتريکي، در محيط نرمافزار ArcGIS Pro پردازش شدند. براي تحليل دقيقتر، شاخصهاي طيفي NDWI، WQI و WPI استخراج شده و به کمک روابط استاندارد مبتني بر بازتاب طيفي، مقدار هر شاخص محاسبه گرديد. سپس، تغييرات مکاني و زماني هر شاخص در طول دوره مورد مطالعه مورد بررسي قرار گرفت تا روند کاهش يا افزايش سطح آب و تغيير در کيفيت زيستمحيطي آن مشخص شود. در ادامه، نتايج حاصل بهصورت نقشههاي طبقهبنديشده و نمودارهاي تحليلي ارائه شدند تا تغييرات کمي و کيفي تالاب در گذر زمان بهصورت دقيق و قابلفهم نمايش يابد.
يافتهها: يافتههاي پژوهش نشان داد که سه شاخص طيفي NDWI، WQI و WPI براي بررسي تغييرات سطح و کيفيت آب تالاب ميقان در بازهي ۲۰۰۰ تا ۲۰۲۴ تحليل شد. نتايج شاخص NDWI نشان داد که سطح آبي تالاب بهطور پيوسته کاهش يافته و از ۳.۷ کيلومترمربع در سال ۲۰۰۰ به حدود ۰.۷ کيلومترمربع در سال ۲۰۲۴ رسيده است. اين روند نزولي بيانگر خشکيدگي تدريجي و کاهش وروديهاي آبي است. شاخص WQI که کيفيت آب را ارزيابي ميکند، نشان داد که وضعيت از «عالي» و «خوب» در سالهاي ابتدايي به «متوسط» و «ضعيف» در سالهاي پاياني تغيير يافته است؛ بهطوريکه مناطق با کيفيت بالا در سال ۲۰۲۴ به کمتر از ۱ کيلومترمربع کاهش يافتهاند. شاخص WPI نيز روند افزايشي آلودگي را تأييد کرد، بهگونهاي که مقدار آن از حدود ۰.۹ در سال ۲۰۰۰ به بيش از ۱ در سال ۲۰۲۴ رسيده و نشاندهنده گسترش نواحي آلوده و افت شديد کيفيت آب است. مقايسه شاخصهاي WQI و WPI نشان داد با افزايش آلودگي (افزايش WPI)، کيفيت آب (کاهش WQI) بهطور معکوس کاهش يافته است. اين نتايج نشان ميدهد تالاب تحت فشار عوامل انساني و اقليمي بهشدت آسيبپذير شده و نيازمند برنامههاي حفاظتي و مديريتي فوري است..
نتايج: نتايج بهدستآمده از تحليل شاخصهاي طيفي نشان داد که سطح آب تالاب ميقان طي سالهاي ۲۰۰۰ تا ۲۰۲۴ بهشکل چشمگيري کاهش يافته و از حدود ۳.۷ کيلومتر مربع به کمتر از ۰.۸ کيلومتر مربع رسيده است. همزمان، کيفيت آب نيز دچار افت قابل توجهي شده و شاخص WQI نشاندهندهي تغيير وضعيت از کيفيت «خوب» و «عالي» به «متوسط» و «ضعيف» در بخشهاي مختلف تالاب است. شاخص WPI نيز افزايش آلودگي و گسترش نواحي با شرايط بحراني را در سالهاي پاياني تأييد کرد. اين يافتهها مؤيد آن است که تالاب تحت تأثير ترکيبي از کاهش وروديهاي آبي، تغييرات اقليمي و افزايش تخليه آلايندههاي انساني قرار گرفته است. بهکارگيري شاخصهاي سنجش از دور، بهويژه در محيط ArcGIS Pro، امکان پايش دقيق و مقرونبهصرفه منابع آبي را فراهم نموده است. در مجموع، نتايج پژوهش اهميت راهکارهاي مديريتي فوري براي حفاظت و احياي اين زيستبوم ارزشمند را برجسته ميسازد.
Background and Aim: Wetlands, as sensitive and dynamic ecosystems, play a fundamental role in environmental sustainability, regulating ecological cycles, moderating local climates, and providing vital water resources. These ecosystems not only preserve biodiversity but also contribute to floods control, groundwater recharge, and air quality improvement. The present study aims to monitor and evaluate changes in the water surface and environmental quality of the Meyghan Wetland during the period from 2000 to 2024. In this research, remote sensing data and spectral indices related to water and surface cover were employed to analyze the spatial and temporal variations of the wetland, in order to identify and assess potential trends of degradation or improvement in its environmental conditions of this water body.
Method: In this study, time-series satellite data from Landsat 7, 8, and 9 covering the period 2000 to 2024 were used to examine changes in the surface and quality of the wetland’s water. The satellite images were first geometrically and radiometrically corrected and then processed in ArcGIS Pro software. For more accurate analysis, the spectral indices NDWI, WQI, and WPI were extracted, and their values were calculated using standard formulas based on spectral reflectance. Subsequently, the spatial and temporal variations of each index were analyzed to determine trends in water level fluctuations and environmental quality changes throughout the study period. Finally, the results were presented as classified maps and analytical charts, allowing for a clear and precise visualization of the quantitative and qualitative changes in the wetland over time.
Results:The findings of this study revealed that three spectral indices—NDWI, WQI, and WPI—were analyzed to assess changes in the water level and quality of Miqan Wetland from 2000 to 2024. NDWI results showed a continuous decline in the wetland’s surface water area, from 3.7 km² in 2000 to approximately 0.7 km² in 2024, reflecting gradual drying and reduced water inflows. The WQI, which evaluates water quality, indicated a shift from “excellent” and “good” conditions in the early years to “moderate” and “poor” conditions in the later years; areas of high water quality decreased to less than 1 km² by 2024. WPI results confirmed an increasing trend of pollution, rising from about 0.9 in 2000 to over 1 in 2024, indicating the expansion of polluted areas and a significant decline in water quality. Comparison of WQI and WPI demonstrated an inverse relationship, where increased pollution (higher WPI) corresponded to reduced water quality (lower WQI). These results suggest that the wetland is significantly affected by anthropogenic and climatic pressures, underscoring the urgent need for conservation and management interventions.
Conclusion: The results obtained from the analysis of spectral indices indicated a significant decline in the water surface area of the Meyghan Wetland between 2000 and 2024, decreasing from approximately 3.7 square kilometers to less than 0.8 square kilometers. Simultaneously, water quality also deteriorated considerably. The WQI index revealed a shift from "good" and "excellent" quality to "moderate" and "poor" conditions across various parts of the wetland. The WPI index further confirmed increased pollution levels and the expansion of critically affected zones in the later years. These findings suggest that the wetland has been impacted by a combination of reduced water inflows, climate change, and increased discharge of human-induced pollutants. The application of remote sensing indices, particularly within the ArcGIS Pro environment, enabled accurate and cost-effective monitoring of water resources. Overall, the study underscores the urgent need for immediate management strategies to protect and restore this valuable ecosystem.
Al-Kareem, S. A., & ALKzwini, R. S. (2022). Statistical analysis for water quality index for Shatt-Al-Hilla river in Babel city. Water Practice and Technology, 17(3), 567–586.
Aghamiri, M., Azizi, Z., & Imani Harsini, J. (2023). Evaluation of SDI, NDWI, NDMI and AWEI indices in coastline extraction and water body area of Shadegan wetland. Journal of Wetland Ecobiology, 14(2), 61–76. [In Persian]
Amini, A., & Gholami, H. (2017). Hydrogeochemical assessment of groundwater and surface water in Miqan Wetland, Iran. Environmental Earth Sciences, 76(14), 1–12.
Banda, T., & Kumarasamy, M. (2020). Development of a universal water quality index (UWQI) for South African river catchments. Water, 12(6), 1534.
Dörnhöfer, K., & Oppelt, N. (2016). Remote sensing for lake research and monitoring–Recent advances. Ecological Indicators, 64, 105–122.
Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35.
Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.
Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016). A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors, 16(8), 1298.
Hajarian, M. H., Atarchi, S., & Hamzeh, S. (2021). Monitoring seasonal changes of Meighan wetland using SAR, thermal and optical remote sensing data. Physical Geography Research Quarterly, 53(117), 365–380. [In Persian]
Jensen, J. R. (2009). Remote sensing of the environment: An earth resource perspective (2nd ed.). Pearson Education India.
Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering & Remote Sensing, 75(11), 1307–1317.
Kachroud, M., Trolard, F., Kefi, M., Jebari, S., & Bourrié, G. (2019). Water quality indices: Challenges and application limits in the literature. Water, 11(2), 361.
Kannel, P. R., Lee, S., Lee, Y. S., Kannel, S. R., & Khan, S. P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring and Assessment, 132, 93–110.
Kim, J. J., Atique, U., & An, K. G. (2019). Long-term ecological health assessment of a restored urban stream based on chemical water quality, physical habitat conditions and biological integrity. Water, 11(1), 114..
Khosravi Yegane, S., & Ghafari Moghadam, A. (2025). Estimating changes in water level and vegetation cover in Shadegan wetland using remote sensing. Journal of Applied Researches in Water Engineering, 2(2), 183–198. [In Persian]
Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., ... & Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530-5549.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.
Mohammadi, A., Almasieh, K., & Nayeri, D. (2021). Change detection of land cover in Meighan wetland using remote sensing technique. Journal of Animal Environmental Research, 13(3), 405–412. [In Persian]
Mohammadi, A., Gholami, H., & Amini, A. (2019). Ecological assessment of Miqan Wetland: Implications for conservation and management. Wetlands Ecology and Management, 27(4), 513–526. [In Persian]
Mukate, S., Panaskar, D., Wagh, V., & Baker, J. (2019). Water pollution index – A new integrated approach to rank water quality. Ecological Indicators, 101, 601–612.
Ouyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39(12), 2621–2635.
Rahimi, A., Akbarian, M., & Moradi, A. (2024). Environmental impacts assessment of ecotourism development in wetland of Tiab. Journal of Tourism Management Studies, 19(67), 197–242. [In Persian]
Rezaei, S., & Rezaei-Moghadam, K. (2024). Determinants of local community participation in restoration of Parishan wetland. Iranian Agricultural Extension and Education Journal, 20(1), 1–21. [In Persian]
Richards, J. A., & Richards, J. A. (2022). Remote sensing digital image analysis (Vol. 5, pp. 256–258). Springer.
Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sensing, 6(5), 4173–4189.
Sadeghi, S., & Akhoundi, O. (2023). Assessing groundwater level declination in Meighan Playa catchment. Journal of Integrated Watershed Management, 2(4), 79–93. [In Persian]
Saghafi, M., Ahmadi, A., & Bigdeli, B. (2022). Detecting surface waters using data fusion of optical and radar remote sensing sensor. Iranian Journal of Watershed Management Science and Engineering, 16(57), 24–31. [In Persian]
Sefidian, S., Salmanmahiny, A., & Berdi Sheikh, V. (2023). Effects of changes in land cover and hydro-climatic parameters on the extent and nature of Alagol, Ajigol and Ulmagol international importance wetlands in the last three decades. Journal of Natural Environment, 76(2), 245–258. [In Persian]
Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2016). Development of river water quality indices—A review. Environmental Monitoring and Assessment, 188, 1–29.
Xu, H. (2006). Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.
