Callebaut and H\"{o}lder type inequalities for positive linear maps of selfadjoint operators via a Kittaneh-Manasrah result
محورهای موضوعی : Operator theory
1 - Applied Mathematics Research Group, ISILC, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
کلید واژه: Positive linear maps, selfadjoint operators, functions of selfadjoint operators, Callebaut inequality, H\"{o}lder inequality,
چکیده مقاله :
Some inequalities of Callebaut and H\"{o}lder type for positive linear maps of continuous functions of selfadjoint linear operators in Hilbert spaces, are given. Applications for power function are provided as well.
Some inequalities of Callebaut and H\"{o}lder type for positive linear maps of continuous functions of selfadjoint linear operators in Hilbert spaces, are given. Applications for power function are provided as well.
[1] D. K. Callebaut, Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl. 12 (1965), 491-494.
[2] M. D. Choi, Positive linear maps on C∗-algebras, Canad. J. Math. 24 (1972), 520-529.
[3] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417-478.
[4] S. S. Dragomir, Cebysev type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces, Math. Mora. 21 (1) (2017), 1-15.
[5] S. S. Dragomir, Grüss’ type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. (2016), 19:62.
[6] S. S. Dragomir, Operator quasilinearity of some functionals associated to Davis-Choi-Jensen’s inequality for positive maps, Bull. Austral. Math. Soc. 95 (2) (2017), 322-332.
[7] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps, Spec. Matrices. 7 (2019), 38-51.
[8] X. Fu, C. He, Some operator inequalities for positive linear maps, Linear Multilinear Algebra. 63 (3) (2015), 571-577.
[9] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269
[10] F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra. 59 (2011), 1031-1037.
[11] J. S. Matharu, M. S. Moslehian, Grüss inequality for some types of positive linear maps, J. Operator Theory. 73 (1) (2015), 265-278.
[12] H. R. Moradi, M. E. Omidvar, S. S. Dragomir, An operator extension ofˇCebyˇ sev inequality, An. St. Univ. Ovid. Cons. 25 (2) (2017), 135-147.
[13] H. R. Moradi, M. E. Omidvar, S. S. Dragomir, More operator inequalities for positive linear maps, Bull. Math. Anal. Appl. 9 (1) (2017), 65-73.
[14] M. Niezgoda, Shannon like inequalities for f-connections of positive linear maps and positive operators, Linear Algebra Appl. 481 (2015), 186-201.
[15] J. Pecaric, T. Furuta, J. MicicHot, Y. Seo, Mond-Pecaric Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[16] R. Sharma, A. Thakur, More inequalities for positive linear maps, J. Math. Inequal. 7 (1) (2013), 1-9.
[17] J. Xue and X. Hu, Some generalizations of operator inequalities for positive linear maps, J. Inequal. Appl. (2016), 2016:27.
[18] P. Zhang, More operator inequalities for positive linear maps, Banach J. Math. Anal. 9 (1) (2015), 166-172.