Estimation of crack propagation in edentulous mandibular bone using finite element analysis
محورهای موضوعی : Mechanical Engineering
Tayebeh Tazh
1
,
Kamran Hassani
2
,
siamak Khorramymehr
3
,
Mohammad Nikkhoo
4
1 - گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: Crack propagation, Mandibular bones, Finite element analysis, 3D scanning, Viscoelastic,
چکیده مقاله :
Mandibular fractures can lead to serious problems such as mandibular deficiency, deviation and asymmetry in patients. Finite element analysis is employed for evaluating the amount and location of cracks in the mandibular bone. In this context, the jawbone thickness impact on maximum stress and crack location in a real human jaw geometry with heterogeneous bone properties and under chewing loading has not been investigated. Here, the mandibular bone thickness impact on the creation and propagation of cracks has been investigated using finite element analysis using ABAQUS software. The studied geometry was created using the 3D scanning technology of a resorbed edentulous jaw. The place of crack is not predetermined, and its starting point is assumed to be at the point of maximum stress. The properties of bones are considered viscoelastic and heterogeneous. Findings reveal that the maximum von Mises stress decreases by increasing the jawbone thickness. Also, by increasing the bone thickness, the rate of crack propagation decreases, so that no cracks are formed in the mandibular bone when the thickness is greater than 10.8 mm. In fact, if the thickness of the mandibular bone in people with atrophic edentulous mandible is less than 10.8 mm, the possibility of failure due to muscle forces and its combination with the chewing forces of the person will be possible.
Mandibular fractures can lead to serious problems such as mandibular deficiency, deviation and asymmetry in patients. Finite element analysis is employed for evaluating the amount and location of cracks in the mandibular bone. In this context, the jawbone thickness impact on maximum stress and crack location in a real human jaw geometry with heterogeneous bone properties and under chewing loading has not been investigated. Here, the mandibular bone thickness impact on the creation and propagation of cracks has been investigated using finite element analysis using ABAQUS software. The studied geometry was created using the 3D scanning technology of a resorbed edentulous jaw. The place of crack is not predetermined, and its starting point is assumed to be at the point of maximum stress. The properties of bones are considered viscoelastic and heterogeneous. Findings reveal that the maximum von Mises stress decreases by increasing the jawbone thickness. Also, by increasing the bone thickness, the rate of crack propagation decreases, so that no cracks are formed in the mandibular bone when the thickness is greater than 10.8 mm. In fact, if the thickness of the mandibular bone in people with atrophic edentulous mandible is less than 10.8 mm, the possibility of failure due to muscle forces and its combination with the chewing forces of the person will be possible.
1. Choi K-Y, Yang J-D, Chung H-Y, Cho B-C. Current concepts in the mandibular condyle fracture management part I: overview of condylar fracture. Arch Plast Surg. 2012;39(04):291-300.
2. Kyzas PA, Saeed A, Tabbenor O. The treatment of mandibular condyle fractures: a meta-analysis. J Cranio-Maxillofacial Surg. 2012;40(8):e438-e452.
3. Wennerberg A, Albrektsson T. Current challenges in successful rehabilitation with oral implants. J Oral Rehabil. 2011;38(4):286-294.
4. Ellis III E, Dean J. Rigid fixation of mandibular condyle fractures. Oral surgery, oral Med oral Pathol. 1993;76(1):6-15.
5. Derfoufi L, Delaval C, Goudot P, Yachouh J. Complications of condylar fracture osteosynthesis. J Craniofac Surg. 2011;22(4):1448-1451.
6. Ellis III E, Throckmorton GS. Treatment of mandibular condylar process fractures: biological considerations. J oral Maxillofac Surg. 2005;63(1):115-134.
7. Iizuka T, Lindqvist C, Hallikainen D, Mikkonen P, Paukku P. Severe bone resorption and osteoarthrosis after miniplate fixation of high condylar fractures: A clinical and radiologic study of thirteen patients. Oral surgery, oral Med oral Pathol. 1991;72(4):400-407.
8. Rallis G, Mourouzis C, Ainatzoglou M, Mezitis M, Zachariades N. Plate osteosynthesis of condylar fractures: a retrospective study of 45 patients. Quintessence Int (Berl). 2003;34(1).
9. Vollmer D, Meyer U, Joos U, Vegh A, Piffkò J. Experimental and finite element study of a human mandible. J Cranio-Maxillofacial Surg. 2000;28(2):91-96.
10. Kavanagh EP, Frawley C, Kearns G, Wallis F, McGloughlin T, Jarvis J. Use of finite element analysis in presurgical planning: treatment of mandibular fractures. Ir J Med Sci. 2008;177:325-331.
11. Hedeșiu M, Pavel DG, Almășan O, Pavel SG, Hedeșiu H, Rafiroiu D. Three-dimensional finite element analysis on mandibular biomechanics simulation under normal and traumatic conditions. Oral. 2022;2(3):221-237.
12. de Mello Santos LS, Rossi AC, Freire AR, Matoso RI, Caria PHF, Prado FB. Finite-element analysis of 3 situations of trauma in the human edentulous mandible. J oral Maxillofac Surg. 2015;73(4):683-691.
13. Costa FWG, Bezerra MF, Ribeiro TR, Pouchain EC, Sabóia V de PA, Soares ECS. Biomechanical analysis of titanium plate systems in mandibular condyle fractures: a systematized literature review. Acta Cirúrgica Bras. 2012;27:424-429.
14. Klotch DW, Lundy LB. Condylar neck fractures of the mandible. Otolaryngol Clin North Am. 1991;24(1):181-194.
15. Haug RH, Peterson GP, Goltz M. A biomechanical evaluation of mandibular condyle fracture plating techniques. J oral Maxillofac Surg. 2002;60(1):73-80.
16. Meyer C, Serhir L, Boutemi P. Experimental evaluation of three osteosynthesis devices used for stabilizing condylar fractures of the mandible. J Cranio-Maxillofacial Surg. 2006;34(3):173-181.
17. Fernández JR, Gallas M, Burguera M, Viano JM. A three-dimensional numerical simulation of mandible fracture reduction with screwed miniplates. J Biomech. 2003;36(3):329-337.
18. Meyer C, Kahn J-L, Boutemi P, Wilk A. Photoelastic analysis of bone deformation in the region of the mandibular condyle during mastication. J Cranio-Maxillofacial Surg. 2002;30(3):160-169.
19. Asprino L, Consani S, de Moraes M. A comparative biomechanical evaluation of mandibular condyle fracture plating techniques. J oral Maxillofac Surg. 2006;64(3):452-456.
20. Zienkiewicz OC, Taylor RL, Ruiz MC. El Método de Los Elementos Finitos. Vol 1. McGraw-Hill Barcelona; 1994.
21. Champy M, JP L. Étude des contraintes dans la mandibule fracturée chez l’homme: Mesures théoriques et vérification par jauges extensométriques in situ. Published online 1977.
22. Haim D, Müller A, Leonhardt H, Nowak A, Richter G, Lauer G. Biomechanical study of the Delta plate and the TriLock Delta condyle trauma plate. J oral Maxillofac Surg. 2011;69(10):2619-2625.
23. Lauer G, Pradel W, Schneider M, Eckelt U. A new 3-dimensional plate for transoral endoscopic-assisted osteosynthesis of condylar neck fractures. J oral Maxillofac Surg. 2007;65(5):964-971.
24. Vajgel A, Camargo IB, Willmersdorf RB, de Melo TM, Laureano Filho JR, de Holanda Vasconcellos RJ. Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. J oral Maxillofac Surg. 2013;71(2):335-342.
25. Sugiura T, Yamamoto K, Murakami K, Sugimura M. A comparative evaluation of osteosynthesis with lag screws, miniplates, or Kirschner wires for mandibular condylar process fractures. J oral Maxillofac Surg. 2001;59(10):1161-1168.
26. Wagner A, Krach W, Schicho K, Undt G, Ploder O, Ewers R. A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2002;94(6):678-686.
