In vitro assessment of the antihyperglycemic property of Prosopis farcta J. F. Macbr and Rheum ribes L. and phytochemical profiling of the most active extract
محورهای موضوعی : Phytochemistry: Isolation, Purification, CharacterizationIsmael Hasan Mohammed 1 , Vahed Zarial 2 , Mahdi Moridi Farimani 3 , Maryam Kharatha 4 , Marzieh Tabefam 5 , Esmail Salih Ibrahim Kakey 6
1 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
2 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
3 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
4 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
5 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
6 - Department of Biology, Faculty of Health and Science, Koya University, Iraq
کلید واژه: α-Glucosidase, Flavonoid, Phytochemical analysis, Prosopis farcta, Rheum ribes, Terpenoid,
چکیده مقاله :
This study aimed to evaluate the α-glucosidase inhibition potential of Prosopis farcta and Rheum ribes. For this purpose, various plant parts—including the root bark, roots, fruits, and leaves of P. farcta, as well as the roots and stalks of R. ribes—were sequentially extracted employing n-hexane, ethyl acetate, and methanol. The α-glucosidase inhibition potential of the extracts was assessed. Subsequently, the phytochemical investigation was carried out on the ethyl acetate extract derived from the root of P. farcta, which exhibited the most pronounced inhibitory effect. This analysis resulted in the isolation and identification of six compounds, including four steroids, one pentacyclic triterpenoid, and one flavonoid. The isolated compounds underwent further evaluation for their α-glucosidase inhibition potential. Among them, daucosterol (3) demonstrated the highest potency, with an IC50 value of 18.6 µM.
This study aimed to evaluate the α-glucosidase inhibition potential of Prosopis farcta and Rheum ribes. For this purpose, various plant parts—including the root bark, roots, fruits, and leaves of P. farcta, as well as the roots and stalks of R. ribes—were sequentially extracted employing n-hexane, ethyl acetate, and methanol. The α-glucosidase inhibition potential of the extracts was assessed. Subsequently, the phytochemical investigation was carried out on the ethyl acetate extract derived from the root of P. farcta, which exhibited the most pronounced inhibitory effect. This analysis resulted in the isolation and identification of six compounds, including four steroids, one pentacyclic triterpenoid, and one flavonoid. The isolated compounds underwent further evaluation for their α-glucosidase inhibition potential. Among them, daucosterol (3) demonstrated the highest potency, with an IC50 value of 18.6 µM.
Al-Aboudi, A., Afifi, F.U., 2011. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence. Pharm. Biol. 49(3), 221-239.
DOI: https://doi.org/10.3109/13880209.2010.501802.
Andrade-Montemayor, H., Cordova-Torres, A., García-Gasca, T., Kawas, J., 2011. Alternative foods for small ruminants in semiarid zones, the case of Mesquite (Prosopis laevigata spp.) and Nopal (Opuntia spp.). Small Rumin. Res. 98(1-3), 83-92.
DOI: https://doi.org/10.1016/j.smallrumres.2011.03.023.
Aronson, J.K., 2010. Side Effects of Drugs Annual: A World-Wide Yearly Survey of New Data and Trends in Adverse Drug Reactions, Elsevier. Amsterdam, Netherlands.
Asghari, B., Salehi, P., Farimani, M.M., Ebrahimi, S.N., 2015. α-Glucosidase inhibitors from fruits of Rosa canina L. Rec. Nat. Prod. 9(3), 276-283.
Barboza, G.E., Cantero, J.J., Núñez, C., Pacciaroni, A., Ariza Espinar, L., 2009. Medicinal plants: A general review and a phytochemical and ethnopharmacological screening of the native Argentine flora. Kurtziana 34(1-2), 7-365.
Bhandari, M.R., Jong-Anurakkun, N., Hong, G., Kawabata, J., 2008. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 106(1), 247-252.
DOI: https://doi.org/10.1016/j.foodchem.2007.05.077.
Chen, H., Guo, J., Pang, B., Zhao, L., Tong, X., 2015. Application of herbal medicines with bitter flavor and cold property on treating diabetes mellitus. eCAM 2015(1), 529491.
DOI: https://doi.org/10.1155/2015/529491.
Esmaeili, M.A., Farimani, M.M., 2014. Inactivation of pi3k/akt pathway and upregulation of pten gene are involved in daucosterol, isolated from Salvia sahendica, induced apoptosis in human breast adenocarcinoma cells. S. Afr. J. 93, 37-47.
DOI: https://doi.org/10.1016/j.sajb.2014.03.010.
Farimani, M.M., Miran, M., 2014. Labdane diterpenoids from Salvia reuterana. Phytochemistry 108, 264-269.
DOI: https://doi.org/10.1016/j.phytochem.2014.08.024.
Farimani, M.M., Mohammadi, M.A., Esmaeili, M.A., Salehi, P., Ebrahimi, S.N., Sonboli, A., Hamburger, M., 2015. Seco-ursane-type triterpenoids from Salvia urmiensis with apoptosis-inducing activity. Planta Med. 81(14), 1290-1295.
DOI: https://doi.org/10.1055/s-0035-1546256.
Farimani, M.M., Taleghani, A., Aliabadi, A., Aliahmadi, A., Esmaeili, M.A., Sarvestani, N.N., Khavasi, H.R., Smieško, M., Hamburger, M., Ebrahimi, S.N., 2016. Labdane diterpenoids from Salvia leriifolia: Absolute configuration, antimicrobial and cytotoxic activities. Planta Med. 82(14), 1279-1285.
DOI: https://doi.org/10.1055/s-0042-107798.
Feyzmand, S., Shahbazi, B., Marami, M., Bahrami, G., Fattahi, A., Shokoohinia, Y., 2018. Mechanistic in vitro evaluation of Prosopis farcta roots potential as an antidiabetic folk medicinal plant. Pharmacog. Mag. 13(4), S852.
DOI: https://doi.org/10.4103/pm.pm_162_17.
Foust, C.M., 1992. Rhubarb, The Wondrous Drug. Princeton University Press, Princeton, New Jersey, United States.
Geçibesler, I.H. 2024. Analysis of lipophilic fingerprints of edible wild rhubarb (Rheum ribes L.) using GC-MS combined with chemometrics. Nat. Prod. Res. 1-12.
DOI: https://doi.org/10.1080/14786419.2024.2397045.
Ghosal, S., Saini, K., 1984. Sitoindosides I and II, two new anti-ulcerogenic sterylacylglucodises from Musa paradisiaca. J. Chem. Res. Synop. (Print) 110.
Hamdan, I., Afifi, F., 2004. Studies on the in vitro and in vivo hypoglycemic activities of some medicinal plants used in treatment of diabetes in Jordanian traditional medicine. J. Ethnopharmacol. 93(1), 117-121.
DOI: https://doi.org/10.1016/j.jep.2004.03.033.
Heidari, N., Namvar, F., Ramezani, M., Piravar, Z., 2025. Antidiabetic effect of Prosopis farcta extract on human adipose-derived mesenchymal stem cells in 3D culture electrospun with PLA. Futur. J. Pharm. Sci. 11(1), 70.
DOI: https://doi.org/10.1186/s43094-025-00823-5.
Ignatavicius, D.D., Workman, M.L., 2015. Medical-Surgical Nursing-E-Book: Patient-Centered Collaborative Care. Elsevier Health Sciences.
Keser, S., Keser, F., Karatepe, M., Kaygili, O., Tekin, S., Turkoglu, I., Demir, E., Yilmaz, O., Kirbag, S., Sandal, S., 2020. Bioactive contents, in vitro antiradical, antimicrobial and cytotoxic properties of rhubarb (Rheum ribes L.) extracts. Nat. Prod. Res. 34(23), 3353-3357.
DOI: https://doi.org/10.1080/14786419.2018.1560294.
Kim, T.G., Kang, S.Y., Jung, K.K., Kang, J.H., Lee, E., Han, H.M., Kim, S.H., 2001. Antiviral activities of extracts isolated from Terminalis chebula retz., Sanguisorba officinalis L., Rubus coreanus miq. and Rheum palmatum L. against hepatitis B virus. Phytother. Res. 15(8), 718-720.
DOI: https://doi.org/10.1002/ptr.832.
Kumar, S., Narwal, S., Kumar, V., Prakash, O., 2011. α-Glucosidase inhibitors from plants: A natural approach to treat diabetes. Phcog. Rev. 5(9), 19-29.
DOI: https://doi.org/10.4103/0973-7847.79096.
Lewis, S.M., 2007. Lewis's Medical-Surgical Nursing: Assessment and Management of Clinical Problems. Elsevier. Australia.
Mahdavi, B., Hajar, T., Ghodsi, A., Mohammadhosseini, M., Mehmandost, M., Talebi, E. 2021. Antidiabetic effect of Sophora pachycarpa seeds extract in streptozotocin-induced diabetic mice: A statistical evaluation. J. Investig. Med. 69(6), 1201-1207.
DOI: https://doi.org/10.1136/jim-2021-001818.
Mccue, P., Kwon, Y.I., Shetty, K., 2005. Anti‐amylase, anti‐glucosidase and anti‐angiotensin i‐converting enzyme potential of selected foods. J. Food Biochem. 29(3), 278-294.
DOI: https://doi.org/10.1111/j.1745-4514.2005.00020.x.
Moghaddam, F.M., Farimani, M.M., Salahvarzi, S., Amin, G., 2007. Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. eCAM 4(1), 95-98.
DOI: https://doi.org/10.1093/ecam/nel065.
Mousavi, M., Farimani, M.M., Kashfi, K., Ghasemi, A. 2025. Antidiabetic potential of Sophora species: Mechanisms, bioactive constituents, and therapeutic prospects. Planta Med.
DOI: https://doi.org/10.1055/a-2597-8133.
Nguyen, H.D., Trinh, B.T., Tran, Q.N., Nguyen, H.D., Pham, H.D., Hansen, P.E., Duus, F., Connolly, J.D., Nguyen, L.-H.D., 2011. Friedolanostane, friedocycloartane and benzophenone constituents of the bark and leaves of Garcinia benthami. Phytochemistry 72(2-3), 290-295.
DOI: https://doi.org/10.1016/j.phytochem.2010.11.016.
Oi, H., Matsuura, D., Miyake, M., Ueno, M., Takai, I., Yamamoto, T., Kubo, M., Moss, J., Noda, M., 2002. Identification in traditional herbal medications and confirmation by synthesis of factors that inhibit cholera toxin-induced fluid accumulation. PNAS 99(5), 3042-3046.
DOI: https://doi.org/10.1073/pnas.052709499.
Olaoluwa, O., Taiwo, O., Nahar, L., Sarker, S. 2022. Ethnopharmacology, phytochemistry and biological activities of selected African species of the genus Ficus. Trends Phytochem. Res. 6(1), 46-69.
DOI: https://doi.org/10.30495/tpr.2022.1939285.1219.
Orozco-Villafuerte, J., Cruz-Sosa, F., Ponce-Alquicira, E., Vernon-Carter, E., 2003. Mesquite gum: Fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild trees. Carbohydr. Polym. 54(3), 327-333.
DOI: https://doi.org/10.1016/S0144-8617(03)00187-5.
Park, E.K., Choo, M.K., Yoon, H.K., Kim, D.H., 2002. Antithrombotic and antiallergic activities of rhaponticin from rhei rhizoma are activated by human intestinal bacteria. Arch. Pharmacal Res. 25, 528-533.
DOI: https://doi.org/10.1007/BF02976613.
Ranjbar-Heidari, A., Khaiatzadeh, J., Mahdavi-Shahri, N., Tehranipoor, M., 2012. The effect of fruit pod powder and aquatic extract of Prosopis farcta on healing cutaneous wounds in diabetic rat. ZJRMS 14(5), 16-20.
Said, O., Khalil, K., Fulder, S., Azaizeh, H., 2002. Ethnopharmacological survey of medicinal herbs in Israel, the golan heights and the west bank region. J. Ethnopharmacol. 83(3), 251-265.
DOI: https://doi.org/10.1016/S0378-8741(02)00253-2.
Saidi, M.R., Farzaei, M.H., Miraghaee, S., Babaei, A., Mohammadi, B., Bahrami, M.T., Bahrami, G., 2016. Antihyperlipidemic effect of Syrian Mesquite (Prosopis farcta) root in high cholesterol diet-fed rabbits. eCAM 21(4), 62-66.
DOI: https://doi.org/10.1177/2156587215627552.
Shahbazi, B., Feyzmand, S., Jafari, F., Ghiasvand, N., Bahrami, G., Fattahi, A., Habtemariam, S., Nabavi, S.M., Shokoohinia, Y., 2020. Antidiabetic potential of Prosopis farcta roots: In vitro pancreatic beta cell protection, enhancement of glucose consumption, and bioassay‐guided fractionation. Evid. Based Complement. Alternat. Med. 1, 8048273.
DOI: https://doi.org/10.1155/2020/8048273.
Singh, P., Negi, J.S., Rawat, M.S., Nee Pant, G.J., 2010. Quantification of mineral elements of Rheum emodi Wallr. (Polygonaceae). Biol. Trace Elem. Res. 138, 293-299.
DOI: https://doi.org/10.1007/s12011-009-8603-7.
Singh, Z. 2023. Health with hotness. Trends Phytochem. Res. 7(2), 86-88.
DOI: https://doi.org/10.30495/tpr.2023.1986066.1343.
Sun, H., Zhang, J., Ye, Y., Pan, Y., Shen, Y., 2003. Cytotoxic pentacyclic triterpenoids from the rhizome of Astilbe chinensis. Helv. Chim. Acta. 86(7), 2414-2423.
DOI: https://doi.org/10.1002/hlca.200390194.
Tundis, R., Loizzo, M., Menichini, F., 2010. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 10(4), 315-331.
DOI: https://doi.org/10.2174/138955710791331007.
Usman, A., Thoss, V., Nur-E-Alam, M., 2016. Isolation of (-)-epicatechin from Trichilia emetica whole seeds. Am. J. Org. Chem. 6, 81-85.
Vardanyan, R., Hruby, V., 2016. Synthesis of Best-Seller Drugs. Elsevier. Amsterdam, Netherlands.
Vogl, S., Picker, P., Mihaly-Bison, J., Fakhrudin, N., Atanasov, A.G., Heiss, E.H., Wawrosch, C., Reznicek, G., Dirsch, V.M., Saukel, J., 2013. Ethnopharmacological in vitro studies on Austria's folk medicine—An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J. Ethnopharmacol. 149, 750-771.
DOI: https://doi.org/10.1016/j.jep.2013.06.007.
Yang, Y., Cheng, X., Liu, W., Chou, G., Wang, Z., Wang, C., 2015. Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation. J. Ethnopharmacol. 168(3), 279-286.
DOI: https://doi.org/10.1016/j.jep.2015.03.070.
Yokozawa, T., Fujioka, K., Oura, H., Nonaka, G. I., Nishioka, I., 1991. Effects of Rhubarb tannins on uremic toxins. Nephron 58(2), 155-160.
DOI: https://doi.org/10.1159/000186406.