مروری بر سرمت ها و کاربیدهای سمانته
محورهای موضوعی : سرامیک ها و مواد نسوز
رضا ایرانخواه
1
,
هادی اصغری
2
1 - استادیار، گروه سرامیک، دانشکده مهندسی مواد و متالورژی، دانشگاه سمنان، سمنان، ایران
2 - دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه سمنان، سمنان، ایران
کلید واژه: سرمت, کاربید سمانته, کاربید تنگستن – کبالت, کاربید گرادیانی, بایندر, اینسرت, ساخت افزایشی,
چکیده مقاله :
در سالهای اخیر استفاده از سرمتها به دلیل خواص جالب آنها، که ترکیبی از خواص سرامیکها و فلزات است، رشد قابل توجهی در صنایع مختلف یافته است. انواع متفاوتی از سرمتها، بسته به ترکیب شیمیایی آنها، وجود دارند. در این مقاله، اطلاعاتی خلاصه از سرمتها و کاربیدهای سمانته ارائه شده است. کاربیدهای سمانته دارای طیف وسیعی از کاربردها در صنایع مختلف مانند ابزار برش در ماشینکاری، اجزاء متهها، ابزار برش سنگ و معدنکاری، قالبهای کشش سیم و ... میباشند. برخی از کاربیدهای سمانته معرفی شده به صورت محصولات تجاری و برخی دیگر نیز مانند سرمتهای پایه کاربید نیوبیوم در حد تحقیقاتی بوده که در آینده برای حل مشکلات مرتبط مورد استفاده قرار خواهند گرفت. از جمله کاربیدهای سمانته تجاری میتوان به کاربیدهای ریزدانه یا کاربیدهای حاوی فاز گاما، و کاربیدهای گرادیانی عاری از فاز گاما اشاره نمود. هدف اصلی مقاله ارائه اطلاعاتی در مورد سرمتها و کاربیدهای سمانته برای مهندسان، محققین و علاقمندان به این حوزه است.
In recent years, the use of cermets has shown significant growth in the industry due to their interesting features that combine properties of metals and ceramics. There are different possible types of cermets, depending on their compositions. In this article, we have presented brief information about cermets and cemented carbides. Cemented carbides cover a wide range of applications in many relevant industries, i.e., cutting tools for machining, components of drill bits, rock tools and mining, or as wear parts in wire drawing dies and etc. Some of the introduced cemented carbides are established in products (i.e., fine-grained or γ-phase containing carbides; γ-phase free gradient carbides) and other microstructures are research trends focusing on solving present and future needs (i.e., NbC-cermets). The paper aim is to serve as an introduction to cemented carbide and cermets for engineers, researchers and scientists
[1] K. Schröter, "DRP 420.689: sintered hard metal alloy and procedure for its fabrication", US1549615, 1923.
[2] R. M. German, "A-Z of powder metallurgy", Oxford, UK: Elsevier Advanced Techology, 2005.
[3] H. Kolaska & P. Ettmayer, "Geschichte der Hartmetalle (History of Hard Metals)," Book, 2013.
[4] D. Mari, "Cermets and hardmetals, encyclopedia of materials: science and technology", Elsevier Science Ltd, pp.1118–1123, 2001.
[5] W. Lengauer, "Hardmetals and cermets;actual tendencies of development (in German)", Contribution to the planned book of Kolaska and Ettmayer, 2013.
[6] M. Humenik Jr & N. M. Oarikh, "Cermets: I, Fundamental Concepts Related to Micro-structure and Physical Properties of Cermet Systems", J. Am. Ceram. Soc, vol. 39, pp. 60-63, 1956.
[7] W. Lengauer & F. Scagnetto, "Ti (C, N)-based cermets: critical review of achievements and recent developments", Solid State Phenomena, vol. 274, 53-100, 2018.
[8] L. Heydari, P. F. Lietor, F. A. Corpas-Iglesias & O. H. Laguna, "Ti(C,N) and WC-Based Cermets: A Review of Synthesis, Properties and Applications in Additive Manufacturing", Materials, vol. 14, no. 22, p. 6786, 2021.
[9] H. Ortner, H. Kolaska & P. Ettmayer, "The history of the technological progress of hardmetals", Int. J. Refract. Met. Hard Mater, vol. 44, pp. 148–159, 2014.
[10] K. Schröter, "Gesinterte harte Metallegierung und Verfahren zu ihrer Herstellung", German Patent DE420689, 1923.
[11] P. Schwarzkopf & I. Hirschl, "Mehrere Metallkarbide enthaltendes Hartmetall", Insbesondere für Formkörper oder Werkzeugteile Austrian Patent AT160172, 1931.
[12] R. Kieffer & F. Kölbl, "Über die Entwicklung und Eigenschaften warm- und zunderfester Hartlegierungen auf Titankarbidbasis mit Nickel-Kobalt-Chrom-Bindern Planseeber", Pulvermetall, vol. 1, pp.17-35, 1952.
[13] T. Claar, W. B. Johnson, C. A. Andersson & G. H. Schiroky, "Microstructure and Properties of Platelet-Reinforced Ceramics Formed by the Directed Reaction of Zirconium with Boron Carbide", In Book 13th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings, Editor(s): John, B., Wachtman, Jr., Wiley, United States, vol. 10, pp. 599-609, 1989.
[14] "European Hard Materials Group (EuroHM)", https://www.epma.com/european-hard-materials-group.
[15] Ch. Mitterer, "PVD and CVD Hard Coatings", Encyclopedia Comprehensive Hard Materials, vol. 2, pp. 449–467, 2014.
[16] A. Inspektor & P. A. Salvador, "Architecture of PVD coatings for metal cutting applications: a review", Surf. Coat. Technol, vol. 257, pp. 138–153, 2014.
[17] R. Haubner, M. Lessiak, R. Pitonak, A. Köpf & R. Weissenbacher, "Evolution of conventional hard coatings for its use on cutting tools", Int. J. Refract. Met. Hard Mater, vol. 62, pp. 210–218 Part B. 2017.
[18] "International Tungsten Industry Association", www.itia.info.
[19] W. D. Schubert, E. Lassner & W. Boehlke, "Cemented carbides—a success story", in: Tungsten, Int. Tungsten Industry Association (ITIA), June 2010.
[20] S. Ahn & S. Kang, "Formation of Core/Rim Structures in Ti (C,N)-WC-Ni Cermets via a Dissolution and Precipitation Process", J. Am. Ceram. Soc, vol. 83, pp. 1489–1494, 2000.
[21] W. Wan, J. Xiong & M. Liang, "Effects of secondary carbides on the microstructure, mechanical properties and erosive wear of Ti(C,N)-based cermets", Ceram. Int, vol. 43, no. 1, pp. 944–952, 2017.
[22] D. Park & Y. Lee, "Effect of carbides on the microstructure and properties of Ti(C,N) based Ceramics", J. Am. Ceram. Soc, vol. 82, no. 11, pp. 3150–3154, 1999.
[23] "Gesintertes Hartmetall Österr", Pat. 160172, 1931.
[24] H. Kolaska, "Powder metallurgy of hardmetals (in German)", Hagen: Fachverband Pulvermetallurgie; 1992.
[25] K. Dreyer & H. van den Berg, "Neue Cermet-Schneidwerkstoffe-Stand der Technikheute", Keram. Z, 52 2000.
[26] R. Kieffer, "Sintered hard alloy and method of making", US Patent 3741733, UGINE CARBONE, 1973.
[27] S. Zhang, "Titanium carbonitride-based cermets: processes and properties", Mater. Sci. Eng, vol. A 163, no. 1, pp. 141–148, 1993.
[28] D. Moskowitz & L. L. Terner, "Cemented titanium carbonitrides: Effects of temperature and carbon-to-nitrogen ratio", Mater. Sci. Eng, vol. 105–106, pp. 265–268, 1988.
[29] V. A. Tracey, "Nickel in hardmetals", Int. J. Refract. Met. Hard Mater, vol. 11, no. 3, pp. 137–149, 1992.
[30] G. E. D'Errico, "Tool-life reliability of cermet inserts in milling tests", J. Mater. Process. Technol, vol. 77, pp. 337–343, 1988.
[31] Y. Peng, H. Miao & Z. Peng, "Development of TiCN-based cermets: Mechanical properties and wear mechanism", Int. J. Refract. Met. Hard Mater, vol. 39, pp. 78–89, 2013.
[32] P. Feng, W. H. Xiong & L. X. Yu, "Metallurgical Reaction Foundation and Microstructural Characterization of Ti(C,N)-Based Cermets Part I: Metallurgical Reaction Foundation during Sintering", Mater Rev, vol. 18, pp. 9–11, 2004.
[33] U. Rolander, G. Weinl & P. Lindahl, "Hans-Olof Andrén. Titanium-based carbonitride alloy with controllable wear resistance and toughness", US Patent 6129891, AB Sandvik, 1995.
[34] T. Lenskaya, V. Toropchenov & et al, "Manufacture and Application of Cemented Carbides", Metallurgia, Moscow, p. 107, 1982.
[35] M. Zwinkels, U. Rolander, G. Weinl & A. Piirhonen, "Method for producing Ti (C, N)—(Ti,Ta,W) (C,N)—Co alloys for cutting tool applications", US Patent 6290902, AB Sandvik, 2001.
[36] U. Rolander, M. Zwinkels & G. Weinl, "Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for finishing and semifinishing turning cutting tool applications", US Patent US7157044, AB Sandvik, 2007.
[37] H. Xiong, Y. Wen, X. Gan, Z. Li & L. Chai, "Influence of coarse TiCN content on the morphology and mechanical properties of ultrafine TiCN-based cermets", Mater. Sci. Eng, vol. A 682, pp. 648–655, 2017.
[38] D. Moskowitz & L. L. Terner, "Cemented titanium carbonitrides: Effects of temperature and carbon-to-nitrogen ratio", Mater. Sci. Eng, vol. A 105–106, no. Part 1, pp. 265–268, 1988.
[39] Y. Kang & S. Kang, "The surface microstructure of TiC-(Ti,W)C-WC-Ni cermets sintered in a nitrogen atmosphere", Mater. Sci. Eng, vol. A 27–28, pp. 7241–7246, 2010.
[40] I. Sadik, "An Introduction to Cutting Tools Materials and Applications", AB Sandvik Coromant, 2013.
[41] P. Ettmayer, H. Kolaska, W. Lengauer & K. Dreyer, "Ti(C,N) cermets-Metallurgy and Properties", Int. J. Refract. Met. Hard Mater vol. 13, pp. 343–351, 1995.
[42] S. Cardinal, A. Malchère, V. Garnier & G. Fantozzi, "Microstructure and mechanical properties of TiC–TiN based cermets for tools application", Int. J. Refract. Met. Hard Mater, vol. 27, pp. 521–527, 2009.
[43] S. Y. Zhang, "Titanium carbonitride-based cermets: processes and properties", Mater. Sci. Eng, vol. A 163, pp. 141–148, 1993.
[44] S. A. Jose, M. John & P. L. Menezes, "Cermet systems: synthesis, properties, and applications", Ceramics,. vol. 5, no. 2: pp. 210-236, 2022.
[45] A. G. Dela Obra, Y. Torres, M. A. Aviles & E. Chicardi, "A new family of cermets: chemically complex but microstructurally simple", Int J Refract Hard Met, vol. 63, pp. 17-25, 2017.
[46] R. S. Parihar, S. G. Setti & R. K. Sahu, "Recent advances in the manufacturing processes of functionally graded materials: A review", Sci. Eng. Compos. Mater, vol. 25, pp. 309–336, 2018.
[47] F. G. Caballero, "Encyclopedia of materials: metals and alloys", (No Title), 2021.
[48] R. German, "Sintering Theory and Practice", John Wiley & Sons Inc, 1996.
[49] W. Schaat, "Sintervörgänge: Grundlagen", VDI Verlag GmbH, 1992.
[50] Z. Zak Fang, X. Wang, T. Ryu, K. S. Hwang & H. Y. Song, "Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide– a review", Int. J. Refract. Met. Hard Mater, vol. 27, p. 288, 2009.
[51] C. J. R. González Oliver, E. A. Álvarez & J. L. García, "Kinetics of densification and grain growth in ultrafine WC-Co composites", Int. J. Refract. Met. Hard Mater, vol. 59, pp. 121–131, 2016.
[52] J. García, W. Strelsky & M. Lackner (Ed.), "Chapter 9: Process Development and scale up of cemented carbide production in Scale-up in Metallurgy", Verlag ProcessEng Eng GmbH, pp. 235–265, 2010.
[53] T. Y. Kosolapova, "Carbides", Springer, New York, United States, p51, 1971.
[54] ا. ح. امامی، س. ک . حسینی و د. داوودی، "تولید نانوپودر کامپوزیتی نیکل - کاربید وانادیم از مواد اولیه اکسیدی به روش مکانوشیمیایی"، فرآیندهای نوین در مهندسی مواد،. شماره 4، صفحه 29-39، 1397.
[55] B. Kear & L. McCandlish, "Chemical processing and properties of nanostructured WC-Co materials", Nanostructured Mater, vol. 3, pp. 19–30, 1993.
[56] L. McCandlish, B. Kear & B. Kim, "Chemical processing of nanophase WC–Co composite powders", Mater. Sci. Technol, vol. 6, pp. 953–957, 1990.
[57] N. Al-Aqeeli, N. Saheb, T. Laoui & K. Mohammad, "The Synthesis of nanostructured WC-based hardmetals using mechanical alloying and their direct consolidation", J. Nanomater, pp. 1–16, 2014.
[58] R. German, "Sintering Theory and Practice", John Wiley & Sons Inc, New York, United States, 1996.
[59] J. Niittynen, R. Abbel, M. Mäntysalo, J. Perelaer, U. S. Schubert & D. Lupo, "Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink", Thin Solid Films, vol. 556, pp. 452-459. 2014.
[60] S. Zavadiuk, P. Loboda, T. Soloviova & I. Trosnikova, "Optimization of the sintering parameters for materials manufactured by powder injection molding", Powder Metallurgy and Metal Ceramics, vol. 59: pp. 22-28, 2020.
[61] B. Mouawad, M. Soueidan, D. Fabrègue & C. Buttay, "Full densification of molybdenum powders using spark plasma sintering", Metallurgical and Materials Transactions A, vol. 43, pp. 3402-3409, 2012.
[62] K. J. Brookes, "3D-printing style additive manufacturing for commercial hardmetals", Metal Powder Report, vol. 70, no. 3, pp. 137-140, 2015.
[63] J. Ruiz-Morales, A. Tarancón, J. Canales-Vázquez, J. Méndez-Ramos, L. Hernández-Afonso, P. Acosta-Mora, J. R. Marín Ruedac & R. Fernández-Gonzáleza, "Three dimensional printing of components and functional devices for energy and environmental applications", Energy & Environmental Science, vol. 10, no. 4, pp. 846-859, 2017.
[64] J. Deckers, J. Vleugels & J. P. Kruth, "Additive manufacturing of ceramics: A review", J. Ceram. Sci. Technol, vol. 5, no. 4, pp. 245-260, 2014.
[65] K. V. Wong & A. Hernandez, "A review of additive manufacturing", International scholarly research notices, no. 1, p. 208760, 2012.
[66] A. Davydova, A. Domashenkoff, A. Sova & I. Movchan, "Selective laser melting of boron carbide particles coated by a cobalt-based metal layer", Journal of Materials Processing Technology, vol. 229, pp. 361-366, 2016.
[67] P. Regenfuss, A. Streek, F. Ullmann & C. Kühn, "Laser micro sintering of ceramic materials", part 2. Interceram, vol. 57, no. 1, pp. 6-9, 2008.
[68] R. S. Khmyrov, V. A. Safronov & A. V. Gusarov, "Synthesis of nanostructured WC-Co hardmetal by selective laser melting", Procedia IUTAM, vol. 23, pp. 114-119, 2017.
[69] E. Uhlmann, A. Bergmann & W. Gridin, "Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting", Procedia Cirp, vol. 35, pp. 8-15. 2015.
[70] B. AlMangour & D. Grzesiak, "Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content", Materials & Design, vol. 104, pp. 141-151, 2016.
[71] S. Kumar, J. P. Kruth & L. Froyen, "Wear behaviour of SLS WC-Co composites", 2008.
[72] J. García, V. Collado Ciprés, A. Blomqvist & B. Kaplan, "Cemented carbide microstructures: a review", International Journal of Refractory Metals and Hard Materials, vol, 80, pp. 40-68, 2019.
[73] P. Ettmayer, "Hardmetals and cermets", Annu. Rev. Mater. Sci, vol. 19, no. 1, pp. 145-164, 1989.
[74] S. Lay, "HRTEM investigation of dislocation interactions in WC", Int. J. Refract. Met.Hard Mater, vol. 41, pp. 416–421, 2013.
[75] S. Huang, J. Xiong, Z. Guo, W. Wana, L. Tang, H. Zhong, W. Zhou, B. Wang, "Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature", Int J Refract Hard Met, vol. 48, pp. 134–140, 2015.
[76] K. Tsuda, "History of development of cemented carbides and cermet", SEI Technical Review, vol. 82, pp. 16-20, 2016.
[77] H. Kolaska, "Hartmetall– gestern, heute und morgen", Metall Jahrgang, pp. 825–832. 2007.
[78] R. Kieffer & F. Benesovsky, "Hartmetalle", Springer Verlag, 1965.
[79] K. J. A. Brookes, "World Directory and Handbook of Hardmetals and Hard Materials", 6th Ed., Int. Carbide Data, 1996.
[80] R. B. Bhagat, J. C. Conway Jr, M. F. Amateau & R. A. Brezler III, "Tribological performance evaluation of tungsten carbide-based cermets and development of a fracture mechanics wear model", Wear, vol. 201, no. 1-2, pp. 233-243, 1996.
[81] B. Roebuck, M. G. Gee & R. Morrell, "Hardmetals- Microstructural Design, Testing and Property Maps", in: G. Kneringer, P. Rödhammer, H. Wildner, A.G. Plansee Holding (Eds.), 15 International Plansee Seminar, vol. 4 Reutte, p. HM84, 2001.
[82] S. Johansson & G. Wahnström, "A computational study of thin cubic carbide films in WC/Co interfaces", Acta Mater, vol. 59, pp. 171–181, 2011.
[83] S. Lay & J. Thibault, "Structure and role of the interfacial layers in VC-rich WC-Co cermets", Philos. Mag, vol. 83, no. 10, pp. 1175–1190, 2003.
[84] W. D. Schubert, A. Bock & B. Lux, "General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production", Int. J. Refract. Met. Hard Mater, vol. 13, no. 5, pp. 281–296, 1995.
[85] E. Rudy, B. F. Kieffer & E. Baroch, "HfN coatings for cemented carbides and new hardfacing alloys on the basis (Mo,W)C-(Mo,W)2C, Planseeber", Pulvermetall, vol. 26, pp. 105–115, 1978.
[86] W. D. Schubert, "Doped Hexagonal Tungsten Carbide and Method for Producing Same", Patent application WO2012145773, 2011.
[87] S. Norgren, J. García, A. Blomqvist & L. Yin, "Trends in the P/M hard metal industry", Int. J. Refract. Met. Hard Mater, vol. 48, pp. 31–45. 2015.
[88] K. Frisk, "Study of the Effect of Alloying Elements in Co-WC Based Hardmetals by Phase Equilibrium Calculations". 2009.
[89] C. Barbatti, , J. Garcia, P. Brito & A. R. Pyzalla, "Influence of WC replacement by TiC and (Ta, Nb) C on the oxidation resistance of Co-based cemented carbides", International Journal of Refractory Metals and Hard Materials, vol. 27, no. 4, pp. 768-776, 2009.
[90] M. Hellsing, A. Henjered, H. Nordén & H. O. Andrén, "Atom-probe microanalysis of WC-Co based cemented carbides, Science of Hard Materials", Springer US, p. 93, 1983.
[91] T. Johansson & B. Uhrenius, "Phase equilibria, isothermal reactions, and a thermodynamic study in the Co-WC system at 1150°", C. Metal Science, vol. 12, no. 2, p. 83, 1983.
[92] A. Markström, K. Frisk & B. Sundman, "A revised thermodynamic description of the Co-W-C system", J. Phase Equilib. Diffus, vol. 26, no. 2, pp. 152–160, 2005.
[93] X. Ren, Z. Peng, Y. Peng, Z. Fu, C. Wang, L. Qi & et al, "Effect of SiC nano-whisker addition on WC–Ni based cemented carbides fabricated by hot-press sintering", Int. J. Refract. Met. Hard Mater, vol. 36, pp. 294–299, 2013.
[94] M. Woydt & H. Mohrbacher, "Friction and Wear of binder-less niobium carbide", Wear, vol. 1–2, pp. 126–130, 2013.
[95] M. Woydt, H. Mohrbacher, J. Vleugels & S. Huang, "Niobium carbide for wear protection– tailoring its properties by processing and stoichiometry", Metal Powder Rep, vol. 71, no. 4, pp, 265–272. 2016.
[96] J. F. Smith & O. N. Carlson, "The niobium carbon system", J. Nucl. Mater, vol. 148, pp. 1–16, 1987.
[97] "REACH", http://ec.europa.eu/ environment/chemicals/reach/reach_intro.htm.
[98] H. Moon, B. K. Kim & S. J. L. Kang, "Growth mechanism of round-edged NbC grains in Co liquid", Acta Mat, vol. 49, pp. 1293–1299, 2001.
[99] M. Woydt & H. Mohrbacher, "The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt or Fe3Al", Wear, vol. 321, pp. 1–7. 2014.
[100] M. Schwarzkopf, H. E. Exner, H. F. Fischmeister & W. Schintlmeister "Kinetics of compositional modification of (W, Ti) C-WC-Co alloy surfaces", Materials Science and Engineering: A, vol. 105, pp. 225-231, 1988.
[101] J. Garcia & O. Prat, "Experimental investigations and DICTRA simulations on formation of diffusion-controlled fcc-rich surface layers on cemented carbides", Applied surface science, vol. 257, no. 21, pp. 8894-8900, 2011.
[102] H. O. Andrén, "Microstructures of cemented carbides", Materials & Design, vol. 22, no. 6, pp. 491-498, 2001.
[103] J. Kim & S. Kang, "WC platelet formation via high-energy ball mill", International Journal of Refractory Metals and Hard Materials, vol. 47, pp. 108-112, 2014.
[104] S. Norgren & J. García, "On gradient formation in alternative binder cemented carbides", International Journal of Refractory Metals and Hard Materials, vol. 73, pp. 106-110, 2018.
[105] P. Gustafson & Å. Östlund, "Binder-phase enrichment by dissolution of cubic carbides", Int. J. Refract. Met. Hard Mater, vol. 12, pp. 129–136, 1994.
[106] J. García, G. Lindwall, O. Prat & K. Frisk, "Kinetics of formation of graded layers on cemented carbides: experimental investigations and DICTRA simulations", Int. J. Refract. Met. Hard Mater, vol. 29, pp. 256–259, 2011.
[107] J. García & W. Lengauer, "Quantitative mass spectrometry of decarburisation and denitridation of cemented carbonitrides during sintering", Mikrochim. Acta, vol. 136, pp. 83–89, 2001.
[108] D. S. Janisch, W. Lengauer, A. Eder, K. Dreyer, K. Rödiger, H. W. Daub, D. Kassel & H. van den Berg, "Nitridation sintering of WC–Ti (C, N)–(Ta, Nb) C–Co hardmetals", International Journal of Refractory Metals and Hard Materials, vol. 36, pp. 22-30, 2013.
[109] J. Garcia, "Influence of Fe–Ni–Co binder composition on nitridation of cemented carbides", International Journal of Refractory Metals and Hard Materials, vol. 30, no. 1, pp. 114-120, 2012.
[110] J. Garcia, "Effect of cubic carbide composition and sintering parameters on the formation of wear resistant surfaces on cemented carbides", International Journal of Refractory Metals and Hard Materials, vol. 36, ppp. 66-71, 2013.
[111] V. Ucakar, K. Dreyer & W. Lengauer, "Near-surface microstructural modification of (Ti, W)(C, N)/Co hardmetals by nitridation", International Journal of Refractory Metals and Hard Materials, vol. 20, no. 3, pp. 195-200, 2002.
[112] J. García, "Influence of Fe–Ni–Co binder composition on nitridation of cemented carbide", Int. J. Refract. Met. Hard Mater, vol. 30, no. 11, pp. 114–120, 2012.
[113] U. Fischer, E. T. Hartzell & J. Akerman, "Cemented carbide body used preferably for rock drilling and mineral cutting", US Patent No. 4,743,515, AB Sandvik, 1988.
[114] B. Straumal & I. Konyashin, "WC-Based cemented carbides with high entropy alloyed binders: A review", Metals, vol. 13, no. 1, p. 171, 2023.
[115] Z. Roulon, J. M. Missiaen & S. Lay, "Shrinkage and microstructure evolution during sintering of cemented carbides with alternative binders", International Journal of Refractory Metals and Hard Materials, vol. 101, p. 105665, 2021.
[116] "Cobalt monograph Centre d'Information du Cobalt", Brussels Belgium (1960).
[117] J. M. Marshall & M. Giraudel, "The role of tungsten in the Co binder: Effects on WC grain size and hcp–fcc Co in the binder phase", Int. J. Refract. Met. Hard Mater, vol. 49, pp. 57–66, 2015.
[118] K. P. Mingard, B. Roebuck, J. Marshall & G. Sweetman, "Some aspects of the structure of cobalt and nickel binder phases in hardmetals", Acta Mater, vol. 59, pp. 2277–2290, 2011.
[119] L. Prakash & B. Gries, "WC hardmetals with iron based binders", in: L. Sigl, P. Rödhammer, S. Wildner (Eds.), Proc 17th International Plansee Seminar, Reutte, vol. 2, Austria. (HM 5). 2009.
[120] ب. طولمی¬نژاد، ح. عربی و م. شاهمیری، "بررسی تأثیر سیکل عملیات حرارتی بر استحکام گسیختگی عرضی و ریزساختار بهینه هاردمتال کاربید تنگستن - کبالت". فرآیندهای نوین در مهندسی مواد، شماره 1، صفحه 53-58، 1387.
[121] A. Rajabi, M. Ghazali & A. Daud, "Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet–A review", Materials & Design, vol. 67, pp. 95-106, 2015.
[122] D. Linder, E. Holmström & S. Norgren, "High entropy alloy binders in gradient sintered hardmetal", International Journal of Refractory Metals and Hard Materials, vol. 71, pp. 217-220, 2018.
[123] P. E. Zhou, D. H. Xiao & T. C. Yuan, "Comparison between ultrafine-grained WC–Co and WC–HEA-cemented carbides", Powder Metallurgy, vol. 60, no. 1, pp. 1-6. 2017.
[124] H. C. Kim, I. J. Shon, J. K. Yoon, J. M. Doh & Z. A. Munir, "Rapid sintering of ultrafine WC–Ni cermets", International Journal of Refractory Metals and Hard Materials, vol. 24, no. 6, pp. 427-431, 2006.
[125] E. Ghasali, A. Shahmorad, Y. Orooji, A. Faraji, K. Asadian, M. Alizadeh & T. Ebadzadeh, Effects of vanadium and titanium addition on the densification, microstructure and mechanical properties of WC-Co cermets. Ceramics International, vol. 47, no. 10, pp. 14270-14279, 2021.
[126] L. Prakash, "A review of the properties of WC hardmetals with alternative binder systems", in: H. Bildstein, R. Eck (Eds.), Proc 13th Plansee Seminar, Reutte Tirol, vol. 2, p. HM 9. 1993.
[127] H. Y. Rong, Z. J. Peng, X. Y. Ren, Y. Peng, C. B. Wang, Z. Q. Fu & et al, "Ultrafine WC–Ni cemented carbides fabricated by spark plasma sintering", Mater. Sci. Eng, vol. A 532, pp. 543–547, 2012.
[128] M. Carpenter, "Hardmetal products made from pre-alloyed binder", Proc Euro PM'2011 Barcelona, Spain, Paper, no. 136, 2011.
[129] M. Aristizabal, L. C. Ardila, F. Veiga, M. Arizmendi, J. Fernandez & J. M. Sánchez Moreno, "Comparison of the friction and wear behaviour of WC–Ni–Co–Cr and WC–Co hardmetals in contact with steel at high temperatures", Wear, vol. 280, no. 20, 15–21, 2012.
[130] E. O. Correa, J. N. Santos & A. N. Klein, "Microstructure and mechanical properties of WC Ni–Si based cemented carbides developed by powder metallurgy", Int. J. Refract. Met. Hard Mater, vol. 28, no. 5, pp. 572–575, 2010.
[131] C. S. Chen, C. C. Yang, H. Y. Chai, J. W. Yeh & J. L. H. Chau, "Novel cermet material of WC/multi-element alloy", Int. J. Refract. Met. Hard Mater, vol. 43, 200–204. 2014.
[132] G. Zhu, Y. Liu & J. Ye, "Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder", Mater. Lett, vol. 113, pp. 80–82, 2013.
[133] A. G. de la Obra, M. A. Avilés, Y. Torres, E. Chicardi & F. J. Gotor, "A new family of cermets: Chemically complex but microstructurally simple", Int. J. Refract. Met. Hard Mater, vol. 63, pp. 17–25, 2017.
[134] D. Linder, "Master thesis", KTH, Stockholm, 2016.
[135] S. Nakonechnyi, A. Yurkova & P. Loboda, "WC-based cemented carbide with NiFeCrWMo high-entropy alloy binder as an alternative to cobalt", Vacuum, vol. 222, p. 113052, 2024.
[136] L. Liang, X. Liu, X. Q. Li & Y. Y. Li, "Wear mechanisms of WC–10Ni3Al carbide tool in dry turning of Ti6Al4V", Int. J. Refract. Met. Hard Mater, vol. 48, pp. 272–285, 2015.
[137] J. Long, W. Zhang, Y. Wang, Y. Du, Z. Zhang, B. Lu, K. Cheng & Y. Peng, "A new type of WC–Co–Ni–Al cemented carbide: grain size and morphology of γ'-strengthened composite binder phase", Scr. Mater, vol. 126, pp. 33–36, 2017.
[138] M. Johnson, D. E. Mikkola, P. A. March & R. N. Wright, "The resistance of nickel and iron aluminides to cavitation erosion and abrasive wear", Wear, vol. 140, pp. 279–289, 1990.
[139] M. Habibi Rad & M. Ahmadian, "Golozar Investigation of the corrosion behavior of WC–FeAl–B composites in aqueous media", Int. J. Refract. Met. Hard Mater, vol. 35, pp. 62–69, 2012.
[140] M. Mottaghi & M. Ahmadian, "Comparison of the wear behavior of WC/(FeAl-B) and WC-Co composites at high temperatures", Int. J. Refract. Met. Hard Mater, vol. 67, pp. 105–114, 2017.
[141] C. Bonjour, "Nouveaux développements dans les outils de coupe en cárbure fritte", Wear, vol. 62, no. 1, pp. 83–122, 1980.
[142] J. H. Potgieter, N. Thanjekwayo, P. Olubambi, N. Maledi & S. S. Potgieter-Vermaak, "Influence of Ru additions on the corrosion behaviour of WC–Co cemented carbide alloys in sulphuric acid", Int. J. Refract. Met. Hard Mater, vol. 29, no. 4, pp. 478–487, 2011.
[143] A. F. Lisovskii, "Cemented carbides alloyed with Ruthenium, Osmium and Rhenium", Powder Met Met Cer, vol. 39, pp. 9-10, 2000.
[144] G. R. Goren-Muginstein, S. Berger & A. Rosen, "Sintering study of nanocrystalline tungsten carbide powders", Nanostruct. Mater, vol. 10, no. 5, 795–804, 1998.
[145] S. Imasato, K. Tokumoto, T. Kitada & S. Sakaguchi, "Properties of Ultra-Fine Grain Binderless Cemented Carbide RCCFN", Int. J. Refract. Met. Hard Mater, vol. 13, pp. 305–312, 1995.
[146] P. Ettmayer & W. Lengauer, "The story of cermets", Powder Metall. Int, vol. 21, no. 2, pp. 37-38. 1989.
[147] A. Aramian, Z. Sadeghian, M. Narimani & N. Razavi, "Filippo Berto c A review on the microstructure and properties of TiC and Ti (C, N) based cermets", International Journal of Refractory Metals and Hard Materials, vol. 115, p. 106320. 2023.
[148] J. G. Miranda-Hernández, S. D. De La Torre & E. Rocha-Rangel, "Synthesis, microstructural analysis and mechanical properties of alumina-matrix cermets", Epa.-J. Silic. Based Compos. Mater, no. 1, 2010.
[149] A. Sova, A. Papyrin & I. Smurov, "Influence of ceramic powder size on process of cermet coating formation by cold spray", Journal of thermal spray technology, vol. 18, pp. 633-641, 2009.
[150] A. J. Ruys, "Alumina ceramics: biomedical and clinical applications", Woodhead Publishing, 2018.
[151] J. Kübarsepp, H. Reshetnyak & H. Annuka, "Characterization of the serviceability of steel-bonded hardmetals", International Journal of Refractory Metals and Hard Materials, vol. 12, no. 6, pp. 341-348, 1993.
[152] J. Kübarsepp, H. Klaasen & J. Pirso, "Behaviour of TiC-base cermets in different wear conditions", Wear, vol. 249, no. 3-4, pp. 229-234, 2001.
[153] S. Zhang & G. Lu, "Sintering of Ti (C, N)-based cermets: the role of compaction", MATERIAL AND MANUFACTURING PROCESS, vol. 10, no. 4, pp. 773-783, 1995.
[154] I. Hussainova, "Effect of microstructure on the erosive wear of titanium carbide-based cermets", Wear, vol. 255, no. 1-6, pp. 121-128, 2003.
[155] Z. Geng, Z., S. Li, D. L. Duan & Y. Liu, "Wear behaviour of WC–Co HVOF coatings at different temperatures in air and argon", Wear, vol. 330, pp. 348-353, 2015.
[156] E. M. Trent, "Metal cutting", 3rded.Oxford, London etc.:Butter worth-Heinemann Ltd; 1991.
[157] C. Li, M. Yi, G. Wei, Z. Chen, G. Xiao, J. Zhang, T. Zhou, G. Wu & C. Xu, "Effect of multilayer core-shell microstructure on mechanical properties of Ti (C, N) based self-lubricating cermet materials", Journal of Alloys and Compounds, vol. 817, p. 153197. 2020.
[158] N. J. Dudney, W. West & J. Nanda, "Handbook of Solid State Batteries", 2nd ed.; World Scientific, Singapore, p. 253. 2015.
[159] B. Mondal, P. Das & S. Singh, "Advanced WC–Co cermet composites with reinforcement of TiCN l. prepared by extended thermal plasma route", Mater. Sci. Eng, A, vol. 498, pp. 59-64. 2008.
[160] A. Nino, K. Takahashi, S. Sugiyama & H. Taimatsu, "Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide", Mater Trans, vol. 53, pp. 1475-1480. 2012.
[161] M. Monzón, R. Paz, Z. Ortega & N. Diazet, "Knowledge transfer and standards needs in additive manufacturing, in Additive manufacturing–Developments in training and education", In Book Additive Manufacturing – Developments in Training and Education. Editor(s): Pei, E., Monzón, M., Bernard, A., Springer, New York, United states, pp. 1-13, 2019.
[162] J. Tarragó, C. Ferrari, B. Reig, D. Coureaux, L. Schneider & L. Lanes, "Mechanics and mechanisms of fatigue in a WC–Ni hard metal and a comparative study with respect to WC–Co hardmetals", Int J Fatigue, vol. 70, pp. 252-257, 2015.
[163] P. Ettmayer, H. Kolaska, W. Lengauer & K. Dreyer, "Ti(C,N) Cermets – Metallurgy and Properties", Int. J.Refr.Met. & Hard. Mater, vol. 13, pp. 343-351, 1995.
[164] W. Lengauer, "Carbides: Transition-Metal Solid-State Chemistry". In Book Encyclopedia of inorganic and bioinorganic chemistry. Editor: Csott, R.A. John Wiley & Sons, NewYork, United States, 2011.
[165] H. O. Andrén, "Microstructure of cemented carbides", Mat Design, vol. 22, pp. 491–498. 2001.
[166] C. Friedrich, G. Berg, E. Broszeit & C. Berger, "Datensammlung zu Hartstoff-eigenschaften", Mat-wiss u Werkstofftech, vol. 28, no. 2, pp. 59–76, 1997.
[167] W. Lengauer, "Transition metal carbides, nitrides and carbonitrides in: handbook of ceramic hard materials", Ed Ralf Riedel, vol. 1, pp. 202–252, 2000.
