رتبهبندی کارایی واحدهای تصمیمگیری با دادههای فازی
محورهای موضوعی : توسعه اقتصادی، نوآوری، نغییرات تکنولوژیکی و رشد اقتصادیندا بشاک 1 , شکراله زیاری 2 , محمدمهدی موحدی 3 , امیر غلام ابری 4 , امیرمهدی میاندرق 5
1 - دانشجوی دکتری،گروه مدیریت صنعتی، واحد فیروزکوه، دانشگاه آزاد اسلامی، فیروزکوه، ایران، bashak.mim93@gmail.com
2 - دانشیار، گروه ریاضی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران (نویسنده مسئول)، sh_ziari@azad.ac.ir
3 - مدیریت صنعتی، انشگاه آزاد اسلامی، واحد فیروزکوه، فیروزکوه، ایران
4 - دانشیار، گروه ریاضی، واحد فیروزکوه، دانشگاه آزاد اسلامی، فیروزکوه، ایران، amir.gholamabri@gmail.com
5 - گروه ریاضی،دانشگاه ازاد اسلامی، واحد فیروزکوه، فیروزکوه ، ایران
کلید واژه: تحلیل پوششی داده ها, تکنیک تاپسیس فازی, تاپسیس-DEA فازی, رتبه بندی واحدهای تصمیم گیری,
چکیده مقاله :
هدف این پژوهش، ارائه روشی یکپارچه از روش تحلیل پوششی دادهها و تکنیک TOPSIS فازی براساس شباهت به راهحل ایدهآل برای رتبهبندی کامل واحدهای تصمیمگیری در محیط فازی است. در این روش، DMUها بهعنوان گزینه¬ها، متغیرهای ورودی بهعنوان معیارهای هزینه (ویژگیهای منفی) و متغیرهای خروجی بهعنوان معیارهای سود (ویژگیهای مثبت) لحاظ میشوند؛ زیرا کارایی یک DMU با افزایش مقادیر خروجیها و کاهش مقادیر ورودیها افزایش مییابد. ضمنا روش ارائه شده میتواند برای رتبهبندی DMUها با خروجیهای نامطلوب نیز استفاده شود. کارایی و سادگی این روش از طریق مثالها و مطالعه موردی بررسی شده است. همچنین نتایج بدست آمده با نتایج در مقالات مرتبط مقایسه گردیده است.
The aim of this research is to present an integrated method of data envelopment analysis (DEA) and fuzzy TOPSIS technique based on similarity to the ideal solution for the complete ranking of decision making units in a fuzzy environment. In this method, DMUs are considered as alternatives, input variables as cost criteria (negative attributes) and output variables as benefit criteria (positive attributes); Because the efficiency of a DMU increases by increasing the values of the outputs and decreasing the values of the inputs. In addition, the presented method can be used to rank DMUs with unfavorable outputs. The efficiency and simplicity of this method have been investigated via examples and case study. Also, the obtained results have been compared with the results in related articles
افتخاریان، سیده الهام، هاشمی، سید فرزاد، نعمتی، علی، مهرجو، راضیه و احدزاده نمین، مهناز (1402). توسعه مدل تحلیل پوششی داده¬های شبکه جهت ارزیابی کارایی فنی صنعت داروسازی. مدلسازی اقتصادی، 17(4): 136-115.
- امیر غلامابری (1403). شناسایی واحدهایی با بیشترین مقیاس بهوره¬وری در زنجیره تامین سبز با استفاده از تحلیل پوششی داده¬ها (DEA). مدلسازی اقتصادی، 18(66): 1-23.
- Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10): 1261-1264.
- Bede, B. (2013). Mathematics of fuzzy sets and fuzzy logic. Springer-Verlag, Berlin, Hei- delberg.
-Bracke, S., Radetzky, M., Rosebrock, C. & Ulutas, B. (2019). Efficiency and effectivity of high precision grinding manufacturing processes: An approach based on combined DEA and cluster analyses Procedia CIRP, 79: 292-297. https://doi.org/10.1016/j.procir.2019.02.069.
- Charnes, A., Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6): 429-444. https://doi.org/10.1016/0377-2217 (78) 90138-8.
- Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (1994). Data envelopment analysis: Theory, methodology, and applications, springer dordrecht. Springer Book Archive. https://doi. org/ 10. 1007/978-94-011-0637-5.
- Chen, C- T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1-9.
- Chu, X., Fielding, G. J., & Lamar, B. W. (1992). Measuring transit performance using data envelopment analysis. Transportation Research Part A: Policy and Practice, 26(3): 223-230.
- Ebrahimnejad, A., & Amani, N. (2021). Fuzzy data envelopment analysis in the presence of undesirable outputs with ideal points. Complex & Intelligent Systems, 7(3):1-22.
- Eftekharian, S. E., Hashemi, S. F., Nemati, A., Mehrjoo, R., & Ahadzadeh Namin, M. (2024). Development of network data envelopment analysis model to evaluate the technical efficiency of the pharmaceutical industry. Economic Modeling, 17(64): 115-136. ]in Persian.[
- Emrouznejad, A., & Yang, G-L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61: 4-8. https://doi.org/ 10. 1016 /j. seps.2017.01.008.
- Emrouznejad, A., Tavana, M., & Hatami-Marbini, A. (2014). The state of the art in fuzzy data envelopment analysis. In Performance Measurement with Fuzzy Data Envelopment Analysis, published in Studies in Fuzziness and Soft Computing (309) 1-45, Springer-Verlag.
- Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3): 253-281.
- Färe, R., Grosskopf, S., & Lovell, C. (1985). The measurement of efficiency of production. Kluwer Nijhoff, Boston.
- Färe, R., Grosskopf, S., & Lovell, C. (1983). The structure of technical efficiency. Scandinavian Journal of Economics, 85: 181- 190.
- Fiallos, D., Chavez, J., Mendoza, L., & Campana, J. (2017). Technologies in higher education: Public policies and social appropriation of their implementation. Revista Digital de Investigacion en Docencia Universitaria, 11(1): 193-2. Doi: http://dx.doi.org/10.19083/ridu.11.498
- Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R. A., Ciais, P., & Obersteiner, M. (2020). Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences, 17(15): 4075-4101. DOI: 10.5194/bg-17-4075-2020
- Ghasemi, M.R., Ignatius, J., Lozano, S., Emrouznejad, A., & Hatami-Marbini, A. (2015). A fuzzy expected value approach under generalized data envelopment analysis. Knowledge-Based Systems, 89: 148–159.
- Gholam Abri, A. (2024). Identifying the most productive scale size in the green supply chain using data envelopment analysis. Economic Modeling, 18(66): 1-23. ]in Persian.[
- Guo, P., & Tanaka, H. (2001). Fuzzy DEA: A perceptual evaluation method. Fuzzy Sets and Systems, 119(1):149-160. DOI: 10.1016/S0165-0114(99)00106-2
- Hatami-Marbini, A., Tavana, M., & Ebrahimi, A. (2011). A fully fuzzified data envelopment analysis model. International Journal of Information and Decision Sciences, 3(3): 252-264.
- Hatami-Marbini A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. European Journal of Operational Research, 214(3):457-472. DOI:10.1016/j.ejor.2011.02.001
- Hwang, CL., & Yoon, K. (1981). Methods for multiple attribute decision making. In: Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48318-9_3
- Labijak-Kowalska, A., & Kadziński, M. (2021). Experimental comparison of results provided by ranking methods in data envelopment analysis. Expert Systems with Applications, 173. 114739. https:// doi. org /10.1016/j.eswa.2021.114739.
- Lertworasirikul, S., Fang, SC., Nuttle, H.L.W., & Joines, J.A. et al. (2003). Fuzzy BCC model for data envelopment analysis. Fuzzy Optimization and Decision Making, 2: 337–358. https://doi.org/ 10. 1023/B:FODM.0000003953.39947.b4.
- Matsumoto, Y., Ishimoto, Y., & Takizawa, Y. (2020). Examination of the effectiveness of Neuroscience -Informed Child Education (NICE) within Japanese School Settings. Children and Youth Services Review, 118(3):105405. DOI:10.1016/j.childyouth.2020.105405.
- Montazeri, F.Z. (2019). The survey of data envelopment analysis models in fuzzy stochastic environments. International Journal of Research in Industrial Engineering, 8(4): 366–383.
- Nazarko, J., & Šaparauskas, J. (2014). Application of DEA method in efficiency evaluation of public higher education institutions. Technological and Economic Development of Economy, 20(1): 25-44. DOI:10.3846/20294913.2014.837116.
- Pandey, V., Komal, K., & Dincer, H. (2023). A review on TOPSIS method and its extensions for different applications with recent development. Soft Computing, 27(23):1-29. DOI: 10.1007/s00500-023-09011-0.
Pastor, J.T., Aparicio, J., & Zofío, J.L. (2022). The enhanced Russell graph measure (ERG=SBM): economic inefficiency decompositions. International Series in Operations Research & Management Science, 315. Springer, Cham. https://doi.org/10.1007/978-3-030-84397-7_7
- Peykani P., Mohammadi E., Emrouznejad A., Pishvae M.S., Rostamy-Malkhalifeh M. (2019). Fuzzy data envelopment analysis: An adjustable approach. Expert Systems with Applications, 136:439-452. DOI:10.1016/j.eswa.2019.06.039.
- Puri, J., & Yadav, S.P. (2013). A concept of fuzzy input mix-efficiency in fuzzy DEA and its application in banking sector. Expert Systems with Applications, 40(5):1437–1450. DOI:10. 1016/ j. eswa. 2012. 08.047.
- Ruiz, J.L., Sirvent, I. (2017). Fuzzy cross-efficiency evaluation: A possibility approach. Fuzzy Optimization and Decision Making, Springer, 16(1): 111-126. DOI: 10.1007/s10700-016-9240-1.
- Saati, S.M., Memariani, A., & Jahanshahloo, G.R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optimization and Decision Making, 1(3), 255–267. https://doi.org /10 .1023/A: 1019648512614.
- Sengupta, J. K. (1992). A fuzzy systems approach in data envelopment analysis. Computers & mathematics with applications, 24(8-9): 259-266. https://doi.org/10.1016/0898-1221(92) 90203-T.
- Tavana, M., Khanjani, S., Hatami-Marbini A., Agrell P.J., & Paryab, K. (2013). Chance- constrained DEA models with random fuzzy inputs and outputs. Knowledge-Based Systems, 52: 32 – 52. DOI:10.1016/j.knosys.2013.05.014.
- Tavana, M., & Hatami-Marbini, A., Emrouznejad, A. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. European Journal of Operational Research, 214(3): 457-472.
- Tavana, M. (2003). Cross: A multicriteria group-decision-making model for evaluating and prioritizingadvanced-technology projects at NASA. Interfaces, 33(3): 40-56.
- Wang, Y. M., Luo, L. (2009). Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert Systems with Applications, 36(3): 5205-5211. DOI:10.1016/j.eswa.2008.06.102.
- Wen, M., & Li, H. (2009(. Fuzzy data envelopment analysis (DEA): Model and ranking method. Journal of Computational and Applied Mathematics, 223(2): 872-878. https://doi.org/10. 1016/j. cam. 2008.03.003.
- Wen, M., You, C., & Kang, R. (2010). A new ranking method to fuzzy data envelopment analysis. Computers & Mathematics with Applications, 59(11): 3398–3404.
- Zerafat Angiz, L. M., Emrouznejad, A., & Mustafa, A. (2010). Fuzzy assessment of performance of a decision making units using DEA: A nonradial approach. Expert Systems with Applications, 37(7): 5153-5157. DOI:10.1016/j.eswa.2009.12.078.
- Zhou, W., & Xu, Z. (2020). An overview of the fuzzy data envelopment analysis research and its successful applications. International Journal of Fuzzy Systems, 22(4): 1037-1055. DOI: 10.1007/ s40815-020-00853-6.