اثر نانوکیتوزان حامل عصاره دانه گرده گل زنبورعسل بر سطح آنتی¬اکسیدان¬ها و پراکسیداسیون لیپیدی بافت کبد موش آلوده به استافیلوکوکوس اورئوس
محورهای موضوعی : زیست شناسی سلولی تکوینی گیاهی و جانوری ، تکوین و تمایز ، زیست شناسی میکروارگانیسم
زهرا بیابانی
1
,
زهرا کشتمند
2
1 - گروه زيست شناسي، واحد تهران مرکزي، دانشگاه آزاد اسلامي، تهران، ايران
2 - گروهزیستشناسی،دانشکدهعلومپایه،واحدتهرانمرکزی،دانشگاهآزاداسلامی،تهران،ایران.
کلید واژه: نانوکیتوزان , دانه گرده گل, آنتی اکسیدان, پراکسیداسیون لیپید., کبد, استافیلوکوکوس اورئوس, موش صحرایی,
چکیده مقاله :
امروزه، استفاده از تکنولوژی و معرفی ترکیبات ضد باکتری دوستتدار محیط زیست مانند نانوحاملهای حاوی محصولات گیاهی مورد توجه است.هدف از این پژوهش بررسی اثر نانوکیتوزان حامل دانه گرده گل زنبورعسل بر تغییرات سطح آنتی اکسیدانها و پراکسیداسیون لیپید بافت کبد آلوده به باکتری استافیلوکوکوس اورئوس در موشهای صحرایی نر نژاد ویستار میباشد.در این مطالعه تجربی 28 موش صحرایی نر نژاد ویستار، درچهار گروه شامل گروه کنترل ،آلوده به استافیلوکوکوس اورئوس CFU /ml)108 )، دریافت کننده نانوکیتوزان(mg/kg100)و مدل آلوده دریافت کننده نانوکیتوزان حامل دانه گرده گل(mg/kg 100)تقسیم بندی شدند. القا آلودگی و دریافت نانوکیتوزان با روش گاواژ انجام شد. بعد از دوره تیمار و تشریح حیوانات، بافت کبد جهت بررسی سطح فعالیت آنتیاکسیدان تام ،سوپراکسیددسموتاز، گلوتاتیون پراکسیداز، کاتالاز و مالون دی آلدهیدگروههای مختلف استخراج شد. آنالیز دادهها در گروههای مختلف با نرم افزارSPSS و آزمون آماری واریانس یکطرفه انجام و05/0p< معنیدار در نظر گرفته شدنتایج حاصل، تغییر معنادار سطح آنتی اکسیدان تام،سوپراکسیددسموتاز، گلوتاتیون پراکسیداز، کاتالاز و مالوندیآلدهیدگروههای آلوده را در مقایسه با گروه کنترل نشان داد(P<0.05). در حالیکه کاهش سطح مالون دی آلدهید ، افزایش سطح آنتی اکسیدان تام، سوپراکسیددسموتاز، گلوتاتیون پراکسیداز و کاتالاز در گروههای تیمار در مقایسه با گروه آلوده به صورت معنادار نشان داده شد(P<0.05)نر اساس نتایج به دست آمده نانوکیتوزان حامل دانه گرده گل زنبورعسل اثر تعدیلکنندگی بر سطح آنتیاکسیدانها و پراکسیداسیون لیپید بافت کبد موشهای آلوده به باکتری را نشان داد. بنابراین احتمالا بتواند به عنوان یک راهکار امیدوارکننده درمانی استفاده شود
Today,the use of technology and the introduction of environmentally friendly antibacterial compounds such as nanocarriers containing plant products, is of interest.The aim of this study is to investigate the effect of nanochitosan carrying bee pollen on changes in antioxidant levels and lipid peroxidation in liver tissue infected with Staphylococcus aureus in male Wistar rats.In this experimental study,28male Wistar rats were divided into 4groups including control group, infected with Staphylococcus aureu(108 CFU/ml receiving nanochitosa(100mg/kg)and infected model+receiving nanochitosan carrying Bee polle(100mg/kg Infection induction and receiving nanochitosan were performed by gavage.After the treatment period and dissection of the animals, liver tissue was extracted to examine the activity levels of total antioxidant,superoxide dismutase, glutathione peroxidase,catalase, and malondialdehyde of different groups Data analysis in different groups was performed with SPSS software and one-way variance statistical test and p<0.05was considered significant.The results showed a significant change in the levels of total antioxidants,superoxide dismutase,glutathione peroxidase,catalase and malondialdehyde in the infected groups compared to the control group.While a decrease in the level of malondialdehyde and an increase in the levels of total antioxidants, superoxide dismutase, glutathione peroxidase and catalase in the treatment groups compared to the infected group were significantly show.Based on the results obtained,nanochitosan carrying bee pollen showed a modulating effect on the levels of antioxidants and lipid peroxidation in the liver tissue of ratinfected with bacteria.Therefore,it can probably be used as a promising therapeutic strategy
1.Bao L, Zhao Y, Duan S, Wu K, Shan R, Liu Y, Yang Y, Chen Q, Song C, Li W. Ferroptosis is involved in Staphylococcus aureus-induced mastitis through autophagy activation by endoplasmic reticulum stress. International Immunopharmacology. 2024;140:112818.
2.Wang Z, Guo L, Yuan C, Zhu C, Li J, Zhong H, Mao P, Li J, Cui L, Dong J, Liu K. Staphylococcus pseudintermedius induces pyroptosis of canine corneal epithelial cells by activating the ROS–NLRP3 signalling pathway. Virulence. 2024;15(1):2333271.
3.Tyagi A, Kumar V, Joshi N, Dhingra HK. Combinatorial Effects of Ursodeoxycholic Acid and Antibiotic in Combating Staphylococcus aureus Biofilm: The Roles of ROS and Virulence Factors. Microorganisms. 2024;12(10):1956.
4.Gao X, Wang Z, Xu Y, Feng S, Fu S, Luo Z, Miao J. PFKFB3-Meditated glycolysis via the reactive oxygen species–hypoxic inducible factor 1α Axis contributes to inflammation and proliferation of Staphylococcus aureus in epithelial cells. The Journal of Infectious Diseases. 2024;229(2):535-546.
5.Ebrahimi P, Hoxha L, Mihaylova D, Nicoletto M, Lante A. UV‐A treatment of phenolic extracts impacts colour, bioactive compounds and antioxidant activity. Journal of the Science of Food and Agriculture. 2024;104(15):9559-9568.
6.Liao Y, Chen Z, Yang Y, Shen D, Chai S, Ma Y, Ge R, Wang X, Wang S, Liu S. Antibiotic intervention exacerbated oxidative stress and inflammatory responses in SD rats under hypobaric hypoxia exposure. Free Radical Biology and Medicine. 2023;209:70-83.
7.Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Antioxidant activity of leaf extracts from Stevia rebaudiana Bertoni exerts attenuating effect on diseased experimental rats: A systematic review and meta-analysis. Nutrients. 2023;15(15):3325.
8.Esim N, Dawar P, Arslan NP, Orak T, Doymus M, Azad F, Ortucu S, Albayrak S, Taskin M. Natural metabolites with antioxidant activity from micro-and macro-algae. Food Bioscience. 2024 :105089.
9.Rauf A, Ahmad Z, Formanowicz D, Ribaudo G, Alomar TS. Antioxidant potential of polyphenolic and flavonoid compounds. Frontiers in Chemistry. 2024;12:1463755.
10.Dos Santos NC, Malta SM, Franco RR, Silva HC, Silva MH, Rodrigues TS, de Oliveira RM, Araújo TN, Augusto SC, Espindola FS, Ueira-Vieira C. Antioxidant and anti-Alzheimer's potential of Tetragonisca angustula (Jataí) stingless bee pollen. Scientific reports. 2024;14(1):308.
12.Urcan AC, Criste AD, Dezmirean DS, Bobiș O, Bonta V, Burtescu RF, Olah NK, Cornea-Cipcigan M, Mărgăoan R. Enhancing Antioxidant and Antimicrobial Activities in Bee-Collected Pollen through Solid-State Fermentation: A Comparative Analysis of Bioactive Compounds. Antioxidants. 2024;13(3):292.
13.Aboulghazi A, Fadil M, Touzani S, Hibaoui L, Hano C, Lyoussi B. Phenolic Screening and Mixture Design Optimization for In Vitro Assessment of Antioxidant and Antimicrobial Activities of Honey, Propolis, and Bee Pollen. Journal of Food Biochemistry. 2024;2024(1):8246224.
14.Al-Kahtani SN, Alaqil AA, Abbas AO. Modulation of antioxidant defense, immune response, and growth performance by inclusion of propolis and bee pollen into broiler diets. Animals. 2022;12(13):1658.
15.El Ghouizi A, El Menyiy N, Falcão SI, Vilas-Boas M, Lyoussi B. Chemical composition, antioxidant activity, and diuretic effect of Moroccan fresh bee pollen in rats. Veterinary world. 2020;13(7):1251.
16.Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants. 2024;13(8):895.
17.He Q, Wang J, Li J, Yang W. Polyphenol Profile and Antioxidant, Antityrosinase, and Anti-Melanogenesis Activities of Ethanol Extract of Bee Pollen. Pharmaceuticals. 2024;17(12):1634.
18.Tumilaar SG, Hardianto A, Dohi H, Kurnia D. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. Journal of Chemistry. 2024;2024(1):5594386.
19.Kuljarusnont S, Iwakami S, Iwashina T, Tungmunnithum D. Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View. Molecules. 2024;29(22):5351.
20.Sahyon HA, Al-Harbi SA. Antimicrobial, anticancer and antioxidant activities of nano-heart of Phoenix dactylifera tree extract loaded chitosan nanoparticles: In vitro and in vivo study. International journal of biological macromolecules. 2020;160:1230-1241.
21.Herdiana Y, Husni P, Nurhasanah S, Shamsuddin S, Wathoni N. Chitosan-based nano systems for natural antioxidants in breast cancer therapy. Polymers. 2023;15(13):2953.
22.Zhang M, Hou G, Hu P, Feng D, Wang J, Zhu W. Nano chitosan–zinc complex improves the growth performance and antioxidant capacity of the small intestine in weaned piglets. British Journal of Nutrition. 2021;126(6):801-812.
23.Song H, Yuan W, Jin P, Wang W, Wang X, Yang L, Zhang Y. Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology. 2016;119:41-48.
24.AbdElrazek DA, Hassan NH, Ibrahim MA, Hassanen EI, Farroh KY, Abass HI. Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food and Chemical Toxicology. 2024;184:114436.
25.Rahman AN, Elshopakey GE, Behairy A, Altohamy DE, Ahmed AI, Farroh KY, Alkafafy M, Shahin SA, Ibrahim RE. Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. Fish & Shellfish Immunology. 2022;128:425-435.
26.Liang H, Wang Y, Liu F, Duan G, Long J, Jin Y, Chen S, Yang H. The Application of Rat Models in Staphylococcus aureus Infections. Pathogens. 2024 ; 13(6):434.
27.Al-Baqami N, Hamza R. Synergistic antioxidant capacities of vanillin and chitosan nanoparticles against reactive oxygen species, hepatotoxicity, and genotoxicity induced by aging in male Wistar rats. Human & Experimental Toxicology. 2021;40(1):183-202.
28.Bouazza S, Demmouche A, Toumi-Benali F, Zouba M, Bahri MR, Agher N, Merakchi N, Elahmar M. Effect of bee pollen extract on lead-induced toxicity in rat testis. South Asian Journal of Experimental Biology. 2018;8(3):91-102.
29. Tabaei S, Kouhi Noghondar M, Mohammadzadeh, M,Ataei L, Amel Jamehdar S. Pattern of antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens: Imam Reza hospital in Mashhad. Medical Journal of Mashhad university of Medical Sciences.2016; 59(2): 64-70. [Persian]
30. Guo X. Antibacterial and anti‐inflammatory effects of genistein in Staphylococcus aureus induced osteomyelitis in rats.Journal of Biochemical and Molecular Toxicology .2023;37(4):e23298.
31. Merghni A, Belmamoun AR, Urcan AC, Bobiş O, Lassoued MA. 1, 8-Cineol (Eucalyptol) Disrupts Membrane Integrity and Induces Oxidative Stress in Methicillin-Resistant Staphylococcus aureus. Antioxidants.. 2023 6;12(7):1388.
32.Vaezifar, S., Molaei, M. Preparation and Characterization of Drug-Delivery System of Chitosan Nanoparticles Containing Doxorubicin for Use in the Treatment of Breast Cancer. Journal of Isfahan Medical School, 2019; 37(541): 1047-1053. [Persian]
33.Rami M, Habibi A, Khajehlandi M. The effect of moderate intensity exercise on the activity of catalase enzyme and malondialdehyde in hippocampus area of diabetic male Wistar rats. Feyz Medical Sciences Journal. 2018; 22 (6) :555-563. [Persian]
34. Luhova L, Lebeda A, Hedererova D, Pec P. Activities of amine oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environ.2003; 49(4): 151-157.
35.Reza Pourbabaki, Monireh Khadem, Sajjad Samiei, Fatemeh Amirkhanloo, Seyed Jamaleddin Shahtaheri. Role of rosemary officinalis in the hepatotoxicity induced by Chlorpyrifos sub-chronic exposure in rats. Iran Occupational Health. 2021 ;6: 1¬- 14.
36. Sincihu Y, Lusno MF, Mulyasari TM, Elias SM, Sudiana IK, Kusumastuti K, Sulistyorini L, Keman S. Wistar rats hippocampal neurons response to blood low-density polyethylene microplastics: a pathway analysis of SOD, CAT, MDA, 8-OHdG expression in hippocampal neurons and blood serum Aβ42 levels. Neuropsychiatric disease and treatment. 2023 ; 31:73-83.
39.Ferreira D, Rocha HC, Kreutz LC, Loro VL, Marqueze A, Koakoski G, Santos da Rosa JG, Gusso D, Oliveira TA, de Abreu MS, Barcellos LJ. Bee products prevent agrichemical-induced oxidative damage in fish. PloS one. 2013;8(10):e74499.
40.Huang H, Shen Z, Geng Q, Wu Z, Shi P, Miao X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomedicine & Pharmacotherapy. 2017;95:1765-1776.
41.Salmanpour ahmadi hossein A, manouchehri H, safari R. Evaluation chitosan nono particles and nano-encapsulated thyme effect on microbial spoilage of rainbow trout (oncorhynchus mykiss) fillet inoculated with listeria monocytogenes. Journal of fisheries (iranian journal of natural resources. 2016;68(4):577-587.
42.Tutun H, Kaya MM, Usluer MS, Kahraman HA. Bee pollen: Its antioxidant activity. Uludağ Arıcılık Dergisi. 2021;21(1):119-31.
43.Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxidative medicine and cellular longevity. 2018;2018(1):7074209.
44.Ulusoy E, Kolayli S. Phenolic composition and antioxidant properties of Anzer bee pollen. Journal of Food Biochemistry. 2014;38(1):73-82.
45.LeBlanc BW, Davis OK, Boue S, DeLucca A, Deeby T. Antioxidant activity of Sonoran Desert bee pollen. Food chemistry. 2009;115(4):1299-1305.
46.Denisow B, Denisow‐Pietrzyk M. Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture. 2016;96(13):4303-4309.