بررسی نقش میانجی خودکارآمدی در رابطه سواد دیجیتالی و قصد رفتاری معلمان برای استفاده از هوش مصنوعی در آموزش
محورهای موضوعی : فن‎آوری اطلاعاتغفار کریمیان پور 1 , شهلا حسینی 2 , ادریس دشتی 3 , سمیه جعفری ندوشن 4
1 - دکتری، مدیریت آموزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی
2 - دکتری، فلسفه تعلیم و تربیت، دانشگاه فرهنگیان یزد
3 - کارشناسی ارشد، تحقیقات آموزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه تهران
4 - دکتری، برنامه ریزی درسی، دانشکده علوم تربیتی و روانشناسی؛ دانشگاه الزهرا
کلید واژه: سواد دیجیتالی, خودکارآمدی, قصد رفتاری, هوش مصنوعی,
چکیده مقاله :
این پژوهش با هدف بررسی نقش میانجی خودکارآمدی معلم در رابطه سواد دیجیتالی و قصد رفتاری معلمان برای استفاده از هوش مصنوعی در آموزش انجام شد. روش پژوهش توصیفی از نوع همبستگی با رویکرد معادلات ساختاری بود. جامعه آماری پژوهش شامل تمامی معلمان مقطع ابتدایی شهرستان ثلاث باباجانی به تعداد 352 نفر بود با استفاده از روش نمونه گیری در دستری تعداد 186 نفر به عنوان نمونه انتخاب شدند. برای گردآوری دادهها از پرسشنامه سواد دیجیتال، خودکارآمدی و قصد رفتاری استفاده شد و برای تحلیل دادهها از نرم افزار SPSS و روش های آمار توصیفی و استنباطی و برای بررسی برازش مدل از نرم افزار SMART PLS استفاده شد. نتایج تحلیل داده ها نشان داد که سواد دیجیتال بر قصد رفتار معلمان در استفاده از هوش مصنوعی در آموزش تاثیر مثبت و مستقیم دارد، خودکارآمدی بر قصد رفتار معلمان در استفاده از هوش مصنوعی در آموزش تاثیر مثبت و مستقیم دارد، سواد دیجیتال بر خودکارآمدی معلمان تاثیر مثبت و مستقیم دارد و خودکارآمدی در رابطه بین سواد دیجیتال و قصد رفتار معلمان در استفاده از هوش مصنوعی در آموزش نقش میانجی دارد. بنابراین می توان گفت که سواد دیجیتال و خودکارآمدی از متغیرهای مهم و موثر بر قصد رفتاری معلمان در استفاده از هوش مصنوعی هستند که لازم است مورد توجه پژوهشگران قرار بگیرد.
This research was conducted with the aim of investigating the mediating role of teacher self-efficacy in relation to digital literacy and teachers' behavioral intention to use artificial intelligence in education. The descriptive research method was correlation type with structural equation approach. The statistical population of the research included all the primary school teachers of Salas Babajani city with the number of 352 people, using random sampling method, 186 people were selected as a sample. Digital literacy, self-efficacy and behavioral intention questionnaires were used to collect data, and SPSS software and descriptive and inferential statistical methods were used for data analysis, and SMART PLS software was used to check model fit. The results of the data analysis showed that digital literacy has a positive and direct effect on teachers' intention to use artificial intelligence in education, self-efficacy has a positive and direct effect on teachers' intention to use artificial intelligence in education, digital literacy has an effect on teachers' self-efficacy It is positive and direct, and self-efficacy plays a mediating role in the relationship between digital literacy and teachers' behavioral intention in using artificial intelligence in education. Therefore, it can be said that digital literacy and self-efficacy are important and effective variables on teachers' behavioral intention in using artificial intelligence, which needs to be paid attention to by researchers.
References
Ahmadi Deh Ghotbaddini, M. (2023). The Role Of Perception Of Effective Integration Of Educational Technology In Teaching Process In The Use Of Technology In Learning: The Mediating Role Of Students' Beliefs And Attitude Toward Technology. Journal Of New Approaches In Educational Administration, 14(1), 190-172. (In Persian).
Anthonysamy, L. (2021). Digital Literacy Deficiencies In Digital Learning Environment Among University Students. In: Understanding Digital Industry: Proceedings Of The Conference On Managing Digital Industry, Technology And Entrepreneurship. 5(2): 133-136.
Antonietti, C., Cattaneo, A. (2022). Can Teachers’ Digital Competence Influence Technology Acceptance In Vocational Education? Comput. Hum. Behav. 132(5): 107-116
Bawden, D. (2008). Origins And Concepts Of Digital Literacy. Digital Literacies: Concepts, Policies And Practices, 30(5), 17-32.
Bekrizadeh, H., Panahi, M., & Jamalvandi, B. (2023). The Role Of Digital Literacy On The Technology Acceptance In The Librarians Of Payame Noor University. Technology And Scholarship In Education, 3(2), 27-38. (In Persian).
Boroon, M. (2023). Examining The Role Of Self-Efficacy In The System Of Building Human Competence. Theorizing Criticism Debate, 1(2), 77-93. (In Persian)
Calvani, A., Fini, A., Ranieri, M. & Picci, P(2012). Are Young Generations In Secondary School Digitally Competent? A Study On Italian Teenagers. Computers & Education, 58(4): 797-807
Chen, D., Zhang, Yi., Lin, Y., Ma, J. (2022). The Effects Of Information Literacy And ICT Self-Efficacy On K-12 Teachers' Intention To Use ICT For Teaching. Eleventh International, 5(2): 7-12.
Cheng, S., Kim, Y., Choi, JH. (2024). The Effect Of Digital Literacy On International Students’ Adjustment To University Life: Focusing On The Mediating Effect Of ICT Self-Efficacy. In: Sserwanga, I., Et Al. Wisdom, Well-Being, Lecture Notes In Computer Science, 8(4):145-156.
Goldman, D.L. (2012), User Evaluations Of MIS Success: What Are We Really Measuring?, Proceedings Of The Hawaii International Conference And Information System Sciences, 4(4): 303-314 .
Hasan, B.; Ahmed, M. (2007). Effects Of Interface Style On User Perceptions And Behavioral Intention To Use Computer Systems", Computers In Human Behavior, 6(2): 25-35
Hoseini, M, Fathollahi, M. (2023). A Systematic Review Of The Applied Components Of Artificial Intelligence And New Technologies In The Teaching And Learning Process And Providing Suggested And Effective Solutions In The Classroom, The 7th International School Psychology Conference, Tehran. (In Persian)
Hwang, G.-J., Xie, H., Wah, B.W., Gaˇsevi´C, D. (2022). Vision, Challenges, Roles And Research Issues Of Artificial Intelligence In Education, Comput. Educ.: Artif. Intell. 1(2) 100-115
Lim, E. M. (2023). The Effects Of Pre-Service Early Childhood Teachers’ Digital Literacy And Self-Efficacy On Their Perception Of AI Education For Young Children’, Educ. Inf. Technol. 28(10). 12969–12995
Mansourzadeh M, Mahmoodi F, Hamdollah H. (2016). Investigating The Effective Factors On Acceptance Of ICT Among Students Based On Technology Acceptance Model 3. Educ Strategy Med Sci; 9 (5) :357-370. (In Persian).
Mirashrafi, A. (2023). The Use Of Artificial Intelligence In Education (New Approaches In Personalizing The Learning Process), The Quarterly Journal Of New Developments In Education. (In Persian)
Mirmasiumi, M. (2024). Analyzing The Adoption Of Artificial Intelligence In Educational Centers, New Developments In Educational Management, 9(15): 45-65. (In Persian)
Montenegro-Rueda, M., Fern, J., Andez-Batanero, M. (2022): Digital Competence Of Special Education Teachers: Impact, Challenges And Opportunities, Australas. J. Spec. Incl. Educ. 46 (2):178–192,
Najafzadeh, Sh. (2024). Using Artificial Intelligence For Educational Management: Challenges And Opportunities, Management Research And Development, 1(4): 69-79. (In Persian)
Nouri, A. Shikari, O, Sharifi, M. (2013). Job Stress And Emotional Well-Being Of Teachers: Testing The Mediation Effect Model Of Self-Efficacy Beliefs, Applied Psychology, 7(1): 25-41. (In Persian).
Oran, B. (2023). Correlation Between Artificial Intelligence In Education And Teacher Self-Efficacy Beliefs: A Review. Rumelide Dil Ve Edebiyat Araştırmaları Dergisi. 6(3): 369-373
Paetsch J., Franz S., Wolter I. (2023). Changes In Early Career Teachers’ Technology Use For Teaching: The Roles Of Teacher Self-Efficacy, ICT Literacy, And Experience During COVID-19 School Closure, Teach. Teach. Educ. 135(5): 79-88
Ramazani A, Talebi Z. (2024). A Consideration Of The Roles Of Preservice Teachers’ Information Literacy, Digital Literacy, And ICT Self-Efficacy In Teaching. Tech. Edu. J. 18(1): 271-286. (In Persian)
Rodríguez-De-Dios, I., Igartua, J. J., & González-Vázquez, A. (2016). Development And Validation Of A Digital Literacy Scale For Teenagers. Technological Ecosystems For Enhancing Multiculturality, 4 (1), 1067-1072.
Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. New Jersey: Pearson Education.
Schwarzer, R., Schmitz, G.S., & Daytner, G.T. (1999). The Teacher Self-Efficacy. Applied Psychology: An International Review, 57(10): 152-171
Sharma, S., Saini, R. (2022). On The Role Of Teachers’ Acceptance, Continuance Intention And Self-Efficacy In The Use Of Digital Technologies In Teaching Practices. Teaching Journal, 46(2):721-736.
Tang, Y., & Tseng, H. (2013). Distance Learners’ Self-Efficacy And Information Literacy Skills. The Journal Of Academic Librarianship, 39(3), 517-521.
Tsai, M.-F., Hung, S.-Y., Yu, W.-J., Chen, C. C., Yen, D. C. (2019). Understanding Physicians’ Adoption Of Electronic Medical Records: Healthcare Technology Self-Efficacy, Service Level And Risk Perspectives. Computer Standards & Interfaces. 66(4): 589-601
Tschannen-Moran, M., Hoy, A.W., T(2001). Eacher Efficacy: Capturing An Elusive Construct, Teach. Teach. Educ. 17 (7):783–805
Usluel YK. (2007). Can ICT Usage Make A Difference On Student Teachers’ Information Literacy Self-Efficacy. Library & Information Science Research. 29(1):92-102.
Venkatesh, V. & Bala, H. (2008). Technology Acceptance Model 3 And A Research Agenda On Interventions, Decision Sciences, (39:2), 273-315.
Yalcin, S. A., Kahraman, S., & Yilmaz, Z. A. (2011). Primary School Teachers Of Instructional Technologies Self-Efficacy Levels. Procedia - Social And Behavioral Sciences, 28(4), 499–502.
Yasa, A. D., Rahayu, S. ., Handayanto, S. K. ., & Ekawati, R. (2024). Investigation Effects Digital Literacy On Primary Student Attitude In Indonesia. International Journal Of Elementary Education, 8(1), 11–19.
Young, J., & Sunyoung, P., Lim, E. (2018). Factors Influencing Preservice Teachers' Intention To Use Technology: TPACK, Teacher Self-Efficacy, And Technology Acceptance Model. Educational Technology & Society. 21(2). 48-59.
Zhang, A.B. Aslan, (2021). AI Technologies For Education: Recent Research & Future Directions, Comput. Educ.: Artif. Intell. 2(2): 321-349
Zhao, F., Liu, G.-Z., Zhou, J., Yin, C. (2023). A Learning Analytics Framework Based On Human-Centered Artificial Intelligence For Identifying The Optimal Learning Strategy To Intervene In Learning Behavior, Educ. Technol. Soc. 26(1):132–146.