تاثیر نانوترمیت Al+Ni0.5Co0.5Fe2O4 بر خواص ترکیب RDX: شبیهسازیهای دینامیک مولکولی
محورهای موضوعی : فرآیندهای شبیه سازیاسماعیل ایومن 1 , سید احد هاشمی 2
1 - پژوهشگر، دانشکده نانوفناوری، دانشگاه سمنان، سمنان، ایران
2 - کارشناسی ارشد، مجتمع شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر، تهران، ایران
کلید واژه: نانوترمیت, شبیهسازی دینامیک مولکولی, انرژی فعالسازی و چپمن-ژوگت.,
چکیده مقاله :
کامپوزیتهای بینمولکولی فراپایدار مخلوطی از اکسید فلزی و فلز با اندازه نانو هستند که در شرایط عادی پایدار هستند. هدف اصلی در این تحقیق، بررسی اثرات نانوترمیت Al+Ni0.5Co0.5Fe2O4 برای اولین بار بر خواص ترکیب هگزوژن (RDX) است؛ بنابراین، در این پژوهش اثرات نانوترمیت Al+Ni0.5Co0.5Fe2O4 بر خواص ترکیب RDX، شامل انرژی فعالسازی، فشار انفجار، سرعت انفجار و دمای انفجار با استفاده از شبیهسازی دینامیک مولکولی مطالعه شده است. نتایج شبیهسازی دینامیک مولکولی نشان دادند که نانوترمیت Al+Ni0.5Co0.5Fe2O4 عملکرد کاتالیزوری بالایی بر ترکیب RDX دارد، بهطوریکه انرژی فعالسازی، فشار انفجار و سرعت انفجار نانوکامپوزیتAl+Ni0.5Co0.5Fe2O4+RDX به ترتیب حدود 98/43%، 46/20% و 92/17% کمتر از RDX خالص هستند. بهطور خلاصه، پارامترهای انرژی فعالسازی، فشار انفجار، دمای انفجار و سرعت انفجار بهدستآمده از شبیهسازی دینامیک مولکولی برای ترکیب RDX خالص از مقادیر kJ/mol 76/100، GPa 94/28، K 62/2723 و m/s 16/7560 به ترتیب برای نانوکامپوزیت RDX+Al+Zn0.5Co0.5Fe2O4 به مقادیر kJ/mol 50/65، GPa 14/27، m/s 74/7389 و K 51/3138 تغییر میکنند.
Metastable intermolecular composites are mixtures of nanosized metal oxide/metal that are stable under normal conditions. The main goal of this work is investigated Al+Zn0.5Co0.5Fe2O4 nanothermite effects on the properties of RDX, for the first time. Thus, the effects of the Al+Ni0.5Co0.5Fe2O4 nanothermite on the RDX properties, such as activation energy, detonation pressure, detonation velocity, and detonation temperature were studied in terms of the molecular dynamic simulations, in this work. The results of the molecular dynamic simulation show that the Al+Ni0.5Co0.5Fe2O4 nanothermite has high catalytic performance on the RDX, while the activation energy, detonation pressure, and detonation velocity of the Al+Ni0.5Co0.5Fe2O4+RDX nanocomposite was 43.98, 20.46, and 17.92% lower than that of the pure RDX, respectively. Generally, The activation energy, detonation pressure, detonation velocity, and detonation temperature parameters obtained from the molecular dynamic simulation for the pure RDX changed from 100.76 kJ/mol, 28.94 GPa, 7560.16 m/s, and 2723.62 K to 56.78 kJ/mol, 23.05 GPa, 3217.52, and 6411.26 m/s for the RDX+Al+Zn0.5Co0.5Fe2O4 nanocomposite, respectively.
[1] Y. Gao, W. Ao, L. K. B. Li, S. Zhou, W. He, P. Liu & Q. L. Yan, "Catalyzed combustion of a nanofluid fuel droplet containing polydopamine-coated metastable intermixed composite n-Al/CuO", Aerospace Science and Technology, vol. 118, p. 107005, 2021.
[2] A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor & A. Rouhi, "Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?", Journal of Colloid and Interface Science, vol. 580, pp. 503-514, 2020.
[3] J. Wang, B. Zheng, Z. Qiao, J. Chen, L. Zhang, L. Zhang, Z. Li, X. Zhang & G. Yang, "Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity", Applied Surface Science, vol. 442, 2018.
[4] M. B. Poudel & H. J. Kim, "Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors", Chemical Engineering Journal, vol. 429, 2022.
[5] Y. Wang, F. Li, Y. Shen, C. A. Wang, Z. Zhang, J. Xu, Y. Ye & R. Shen, "Fabrication of high electrostatic safety metastable Al/CuO nanocomposites doped with nitro-functionalized graphene with fast initiation ability and tunable reaction performance", Combustion and Flame, vol. 233, 2021.
[6] C. Rossi, "Two decades of research on nano‐energetic materials, Propellants", Explosives, Pyrotechnics, vol. 39, no. 3, 2014.
[7] E. L. Dreizin, "Metal-based reactive nanomaterials", Progress in Energy and Combustion Science, vol. 35, no. 2, 2009.
[8] S. Junghare, S. Kumari, A. Chaudhary, R. Kumar & S. Rayalu, "Thermite reaction driven pyrotechnic formulation with promising functional performance and reduced emissions", Journal of Hazardous Materials, vol. 424, 2022.
[9] Q. Nguyen, C. Huang, M. Schoenitz, K. T. Sullivan & E. L. Dreizin, "Nanocomposite thermite powders with improved flowability prepared by mechanical milling", Powder Technology, vol. 327, 2018.
[10] V. Goetz, P. Gibot & D. Spitzer, "Spark sensitivity and light signature mitigation of an Al/SnO2 nanothermite by the controlled addition of a conductive polymer", Chemical Engineering Journal, vol. 427, 2022.
[11] M. Comet, C. Martin, F. Schnell & D. Spitzer, "Nanothermites: A short Review. Factsheet for Experimenters, Present and Future Challenges", Propellants, Explosives, Pyrotechnics, vol. 44, no. 1, pp. 18-36, 2019.
[12] Y. Q. Zhao, Y. Zhang & K. Z. Xu, "Effect of precursor on the morphology and supercapacitor performance of CuCo2O4", International Journal of Electrochemical Science, vol. 14, no. 4, 2019.
[13] H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, Z. Wang, Y. Zhao, Q. Tian & C. Wang, "Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field", Advances in Colloid and Interface Science, vol. 294, 2021.
[14] M. Chen, X. Huang, C. Chen, W. Hou & Y. Xu, "M-Dependent activity of MCo2O4 spinels for water splitting and H2 production on Zn0.5Cd0.5S under visible light", Applied Catalysis B: Environmental, vol. 298, 2021.
[15] J. Chen, B. Huang, Y. Liu, Z. Qiao, X. Li, G. Lv & G. Yang, "3D Hierarchically ordered porous carbon entrapped Ni nanoparticles as a highly active catalyst for the thermal decomposition of ammonium perchlorate", Energetic Materials Frontiers, vol. 2, no. 1, 2021.
[16] J. Wang, X. Lian, S. Chen, H. Li & K. Xu, "Effect of Bi2WO6/g-C3N4 composite on the combustion and catalytic decomposition of energetic materials: An efficient catalyst with g-C3N4 carrier", Journal of Colloid and Interface Science, vol. 610, 2022.
[17] D. Xu, T. Xia, H. Xu, W. Fan & W. Shi, Synthesis of ternary spinel MCo2O4 (M = Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting", Chemical Engineering Journal, vol. 392, 2020.
[18] Y. Chen, W. Zhang, C. Yu, D. Ni, K. Ma & J. Ye, "Controllable synthesis of NiCo2O4/Al core-shell nanowires thermite film with excellent heat release and short ignition time", Materials & Design, vol. 155, 2018.
[19] F. Xu, B. Hirt, P. Biswas, D. J. Kline, Y. Yang, H. Wang, A. Sehirlioglu & M. R. Zachariah, "Superior reactivity of ferroelectric Bi2WO6/aluminum metastable intermolecular composite", Chemical Engineering Science, vol. 247, 2022.
[20] G. Meurant, "Detection and correction of silent errors in the conjugate gradient algorithm", Numerical Algorithms, vol. 92, no. 1, 2023.
[21] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", Journal of Computational Physics, vol. 117, no. 1, 1995.
[22] E. Ayoman & H. Abdoos, "Effect of Al + MoO3 nanothermite on RDX performance: An experimental, molecular dynamic and numerical investigation", Chemical Engineering Journal, vol. 493, 2024.
[23] Y. Liu, J. Yin, Z. Wang, X. Zhang & G. Bi, "The EFP formation and penetration capability of double-layer shaped charge with wave shaper", Materials, vol. 13, no. 20, 2020.
[24] Z. Mei, Q. An, F. Q. Zhao, S. Y. Xu & X. H. Ju, "Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives", Physical Chemistry Chemical Physics, vol. 20, no. 46, 2018.
[25] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III & W. M. Skiff, "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations", Journal of the American Chemical Society, vol. 114, no. 25, pp. 10024-10035, 1992.
[26] A. C. T. van Duin, S. Dasgupta, F. Lorant & W. A. Goddard III, "Reax FF: A Reactive Force Field for Hydrocarbons", The Journal of Physical Chemistry A, vol. 105, no. 41, 2001.
[27] D. Guo, S. V. Zybin, Q. An, W. A. Goddard III & F. Huang, "Prediction of the Chapman–Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics", Physical Chemistry Chemical Physics, vol. 18, no. 3, 2016.
[28] D. Guo, D. Guo, F. Huang & Q. An, "Influence of Silicon on the Detonation Performance of Energetic Materials from First-Principles Molecular Dynamics Simulations", The Journal of Physical Chemistry C, vol. 122, no. 42, 2018.
[29] W. Hao, L. Niu, R. Gou & C. Zhang, "Influence of Al and Al2O3 Nanoparticles on the Thermal Decay of 1,3,5-Trinitro-1,3,5-triazinane (RDX): Reactive Molecular Dynamics Simulations", The Journal of Physical Chemistry C, vol. 123, no. 22, 2019.
[30] C. Wang, C. Zhang & X. Xue, "Pressure and Polymorph Dependent Thermal Decomposition Mechanism of Molecular Materials: A Case of 1,3,5,-Trinitro-1,3,5,-triazine", The Journal of Physical Chemistry A, vol. 126, no. 4, 2022.
[31] L. Xiao, L. Zhao, X. Ke, T. Zhang, G. Hao, Y. Hu, G. Zhang, H. Guo & W. Jiang, "Energetic metastable Al/CuO/PVDF/RDX microspheres with enhanced combustion performance", Chemical Engineering Science, vol. 231, 2021.
[32] W. Li, X. Zhang, R. Liu, S. Xu, S. Xu, Y. Lan, Y. Fu, Y. Zhang, Y. Feng & W. Cao, "Thermal decomposition, flame propagation, and combustion reactions behaviours of stearic acid by experiments and molecular dynamic simulation", Chemical Engineering Journal, vol. 461, 2023.
[33] Z. Mei, Q. An, F. Q. Zhao, S. Y. Xu & X. H. Ju, "Reactive Molecular Dynamics Simulation of Thermal Decomposition for Nano-aluminized Explosives", Phys. Chem. Chem. Phys, vol. 20, 2018.
[34] C. Hou, X. Geng, C. An, J. Wang, W. Xu & X. Li, "Preparation of Al Nanoparticles and Their Influence on the Thermal Decomposition of RDX", Cent. Eur. J. Energ. Mater, vol. 10, 2013.
[35] N. Wang, J. Peng, A. Pang, T. He, F. Du & A. Jaramillo-Botero, "Thermodynamic Simulation of the RDX–Aluminum Interface Using ReaxFF Molecular Dynamics", J. Phys. Chem C, vol. 121, 2017.
[36] L. Xiao, Y. Zhang, X. Wang, G. Hao, J. Liu, X. Ke, T. Chen & W. Jiang, "Preparation of a Superfine RDX/Al Composite as an Energetic Material by Mechanical Ball-Milling Method and the Study of its Thermal Properties", RSC Adv, vol. 8, 2018.
[37] Q. P. Luo, X. P. Long, F. D. Nie, G. X. Liu & C. Wu, "Deflagration to detonation transition in weakly confined conditions for a type of potentially novel green primary explosive: Al/Fe2O3/RDX hybrid nanocomposites", Defence Technology, vol. 22, 2023.
[38] D. Guo, S. V. Zybin, Q. An, W. A. Goddard III & F. Huang, "Prediction of the Chapman–Jouguet Chemical Equilibrium State in a Detonation Wave from First Principles Based Reactive Molecular Dynamics", Phys. Chem. Chem. Phys, vol. 18, 2016.
[39] D. Guo, S. V. Zybin, A. P. Chafin, W. A. Goddard III, "Increasing Oxygen Balance Leads to Enhanced Performance in Environmentally Acceptable High-Energy Density Materials: Predictions from First-Principles Molecular Dynamics Simulations", ACS Applied Materials & Interfaces, vol. 14, no. 4, pp. 5257-5264, 2022.
[40] E. Ayoman, “Detonation performance of RDX+Al+Zn0.5Co0.5Fe2O4 nanocomposite predicted from reactive molecular dynamics simulations”, Fuel and Combustion, vol. 17, no. 3, 2024.
