تاثیر نانوترمیت Al+Ni0.5Co0.5Fe2O4 بر خواص ترکیب RDX: شبیهسازیهای دینامیک مولکولی
الموضوعات :اسماعیل ایومن 1 , سید احد هاشمی 2
1 - پژوهشگر، دانشکده نانوفناوری، دانشگاه سمنان، سمنان، ایران
2 - کارشناسی ارشد، مجتمع شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر، تهران، ایران
الکلمات المفتاحية: نانوترمیت, شبیهسازی دینامیک مولکولی, انرژی فعالسازی و چپمن-ژوگت.,
ملخص المقالة :
کامپوزیتهای بینمولکولی فراپایدار مخلوطی از اکسید فلزی و فلز با اندازه نانو هستند که در شرایط عادی پایدار هستند. هدف اصلی در این تحقیق، بررسی اثرات نانوترمیت Al+Ni0.5Co0.5Fe2O4 برای اولین بار بر خواص ترکیب هگزوژن (RDX) است؛ بنابراین، در این پژوهش اثرات نانوترمیت Al+Ni0.5Co0.5Fe2O4 بر خواص ترکیب RDX، شامل انرژی فعالسازی، فشار انفجار، سرعت انفجار و دمای انفجار با استفاده از شبیهسازی دینامیک مولکولی مطالعه شده است. نتایج شبیهسازی دینامیک مولکولی نشان دادند که نانوترمیت Al+Ni0.5Co0.5Fe2O4 عملکرد کاتالیزوری بالایی بر ترکیب RDX دارد، بهطوریکه انرژی فعالسازی، فشار انفجار و سرعت انفجار نانوکامپوزیتAl+Ni0.5Co0.5Fe2O4+RDX به ترتیب حدود 98/43%، 46/20% و 92/17% کمتر از RDX خالص هستند. بهطور خلاصه، پارامترهای انرژی فعالسازی، فشار انفجار، دمای انفجار و سرعت انفجار بهدستآمده از شبیهسازی دینامیک مولکولی برای ترکیب RDX خالص از مقادیر kJ/mol 76/100، GPa 94/28، K 62/2723 و m/s 16/7560 به ترتیب برای نانوکامپوزیت RDX+Al+Zn0.5Co0.5Fe2O4 به مقادیر kJ/mol 50/65، GPa 14/27، m/s 74/7389 و K 51/3138 تغییر میکنند.
[1] Y. Gao, W. Ao, L. K. B. Li, S. Zhou, W. He, P. Liu & Q. L. Yan, "Catalyzed combustion of a nanofluid fuel droplet containing polydopamine-coated metastable intermixed composite n-Al/CuO", Aerospace Science and Technology, vol. 118, p. 107005, 2021.
[2] A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor & A. Rouhi, "Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?", Journal of Colloid and Interface Science, vol. 580, pp. 503-514, 2020.
[3] J. Wang, B. Zheng, Z. Qiao, J. Chen, L. Zhang, L. Zhang, Z. Li, X. Zhang & G. Yang, "Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity", Applied Surface Science, vol. 442, 2018.
[4] M. B. Poudel & H. J. Kim, "Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors", Chemical Engineering Journal, vol. 429, 2022.
[5] Y. Wang, F. Li, Y. Shen, C. A. Wang, Z. Zhang, J. Xu, Y. Ye & R. Shen, "Fabrication of high electrostatic safety metastable Al/CuO nanocomposites doped with nitro-functionalized graphene with fast initiation ability and tunable reaction performance", Combustion and Flame, vol. 233, 2021.
[6] C. Rossi, "Two decades of research on nano‐energetic materials, Propellants", Explosives, Pyrotechnics, vol. 39, no. 3, 2014.
[7] E. L. Dreizin, "Metal-based reactive nanomaterials", Progress in Energy and Combustion Science, vol. 35, no. 2, 2009.
[8] S. Junghare, S. Kumari, A. Chaudhary, R. Kumar & S. Rayalu, "Thermite reaction driven pyrotechnic formulation with promising functional performance and reduced emissions", Journal of Hazardous Materials, vol. 424, 2022.
[9] Q. Nguyen, C. Huang, M. Schoenitz, K. T. Sullivan & E. L. Dreizin, "Nanocomposite thermite powders with improved flowability prepared by mechanical milling", Powder Technology, vol. 327, 2018.
[10] V. Goetz, P. Gibot & D. Spitzer, "Spark sensitivity and light signature mitigation of an Al/SnO2 nanothermite by the controlled addition of a conductive polymer", Chemical Engineering Journal, vol. 427, 2022.
[11] M. Comet, C. Martin, F. Schnell & D. Spitzer, "Nanothermites: A short Review. Factsheet for Experimenters, Present and Future Challenges", Propellants, Explosives, Pyrotechnics, vol. 44, no. 1, pp. 18-36, 2019.
[12] Y. Q. Zhao, Y. Zhang & K. Z. Xu, "Effect of precursor on the morphology and supercapacitor performance of CuCo2O4", International Journal of Electrochemical Science, vol. 14, no. 4, 2019.
[13] H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, Z. Wang, Y. Zhao, Q. Tian & C. Wang, "Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field", Advances in Colloid and Interface Science, vol. 294, 2021.
[14] M. Chen, X. Huang, C. Chen, W. Hou & Y. Xu, "M-Dependent activity of MCo2O4 spinels for water splitting and H2 production on Zn0.5Cd0.5S under visible light", Applied Catalysis B: Environmental, vol. 298, 2021.
[15] J. Chen, B. Huang, Y. Liu, Z. Qiao, X. Li, G. Lv & G. Yang, "3D Hierarchically ordered porous carbon entrapped Ni nanoparticles as a highly active catalyst for the thermal decomposition of ammonium perchlorate", Energetic Materials Frontiers, vol. 2, no. 1, 2021.
[16] J. Wang, X. Lian, S. Chen, H. Li & K. Xu, "Effect of Bi2WO6/g-C3N4 composite on the combustion and catalytic decomposition of energetic materials: An efficient catalyst with g-C3N4 carrier", Journal of Colloid and Interface Science, vol. 610, 2022.
[17] D. Xu, T. Xia, H. Xu, W. Fan & W. Shi, Synthesis of ternary spinel MCo2O4 (M = Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting", Chemical Engineering Journal, vol. 392, 2020.
[18] Y. Chen, W. Zhang, C. Yu, D. Ni, K. Ma & J. Ye, "Controllable synthesis of NiCo2O4/Al core-shell nanowires thermite film with excellent heat release and short ignition time", Materials & Design, vol. 155, 2018.
[19] F. Xu, B. Hirt, P. Biswas, D. J. Kline, Y. Yang, H. Wang, A. Sehirlioglu & M. R. Zachariah, "Superior reactivity of ferroelectric Bi2WO6/aluminum metastable intermolecular composite", Chemical Engineering Science, vol. 247, 2022.
[20] G. Meurant, "Detection and correction of silent errors in the conjugate gradient algorithm", Numerical Algorithms, vol. 92, no. 1, 2023.
[21] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", Journal of Computational Physics, vol. 117, no. 1, 1995.
[22] E. Ayoman & H. Abdoos, "Effect of Al + MoO3 nanothermite on RDX performance: An experimental, molecular dynamic and numerical investigation", Chemical Engineering Journal, vol. 493, 2024.
[23] Y. Liu, J. Yin, Z. Wang, X. Zhang & G. Bi, "The EFP formation and penetration capability of double-layer shaped charge with wave shaper", Materials, vol. 13, no. 20, 2020.
[24] Z. Mei, Q. An, F. Q. Zhao, S. Y. Xu & X. H. Ju, "Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives", Physical Chemistry Chemical Physics, vol. 20, no. 46, 2018.
[25] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III & W. M. Skiff, "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations", Journal of the American Chemical Society, vol. 114, no. 25, pp. 10024-10035, 1992.
[26] A. C. T. van Duin, S. Dasgupta, F. Lorant & W. A. Goddard III, "Reax FF: A Reactive Force Field for Hydrocarbons", The Journal of Physical Chemistry A, vol. 105, no. 41, 2001.
[27] D. Guo, S. V. Zybin, Q. An, W. A. Goddard III & F. Huang, "Prediction of the Chapman–Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics", Physical Chemistry Chemical Physics, vol. 18, no. 3, 2016.
[28] D. Guo, D. Guo, F. Huang & Q. An, "Influence of Silicon on the Detonation Performance of Energetic Materials from First-Principles Molecular Dynamics Simulations", The Journal of Physical Chemistry C, vol. 122, no. 42, 2018.
[29] W. Hao, L. Niu, R. Gou & C. Zhang, "Influence of Al and Al2O3 Nanoparticles on the Thermal Decay of 1,3,5-Trinitro-1,3,5-triazinane (RDX): Reactive Molecular Dynamics Simulations", The Journal of Physical Chemistry C, vol. 123, no. 22, 2019.
[30] C. Wang, C. Zhang & X. Xue, "Pressure and Polymorph Dependent Thermal Decomposition Mechanism of Molecular Materials: A Case of 1,3,5,-Trinitro-1,3,5,-triazine", The Journal of Physical Chemistry A, vol. 126, no. 4, 2022.
[31] L. Xiao, L. Zhao, X. Ke, T. Zhang, G. Hao, Y. Hu, G. Zhang, H. Guo & W. Jiang, "Energetic metastable Al/CuO/PVDF/RDX microspheres with enhanced combustion performance", Chemical Engineering Science, vol. 231, 2021.
[32] W. Li, X. Zhang, R. Liu, S. Xu, S. Xu, Y. Lan, Y. Fu, Y. Zhang, Y. Feng & W. Cao, "Thermal decomposition, flame propagation, and combustion reactions behaviours of stearic acid by experiments and molecular dynamic simulation", Chemical Engineering Journal, vol. 461, 2023.
[33] Z. Mei, Q. An, F. Q. Zhao, S. Y. Xu & X. H. Ju, "Reactive Molecular Dynamics Simulation of Thermal Decomposition for Nano-aluminized Explosives", Phys. Chem. Chem. Phys, vol. 20, 2018.
[34] C. Hou, X. Geng, C. An, J. Wang, W. Xu & X. Li, "Preparation of Al Nanoparticles and Their Influence on the Thermal Decomposition of RDX", Cent. Eur. J. Energ. Mater, vol. 10, 2013.
[35] N. Wang, J. Peng, A. Pang, T. He, F. Du & A. Jaramillo-Botero, "Thermodynamic Simulation of the RDX–Aluminum Interface Using ReaxFF Molecular Dynamics", J. Phys. Chem C, vol. 121, 2017.
[36] L. Xiao, Y. Zhang, X. Wang, G. Hao, J. Liu, X. Ke, T. Chen & W. Jiang, "Preparation of a Superfine RDX/Al Composite as an Energetic Material by Mechanical Ball-Milling Method and the Study of its Thermal Properties", RSC Adv, vol. 8, 2018.
[37] Q. P. Luo, X. P. Long, F. D. Nie, G. X. Liu & C. Wu, "Deflagration to detonation transition in weakly confined conditions for a type of potentially novel green primary explosive: Al/Fe2O3/RDX hybrid nanocomposites", Defence Technology, vol. 22, 2023.
[38] D. Guo, S. V. Zybin, Q. An, W. A. Goddard III & F. Huang, "Prediction of the Chapman–Jouguet Chemical Equilibrium State in a Detonation Wave from First Principles Based Reactive Molecular Dynamics", Phys. Chem. Chem. Phys, vol. 18, 2016.
[39] D. Guo, S. V. Zybin, A. P. Chafin, W. A. Goddard III, "Increasing Oxygen Balance Leads to Enhanced Performance in Environmentally Acceptable High-Energy Density Materials: Predictions from First-Principles Molecular Dynamics Simulations", ACS Applied Materials & Interfaces, vol. 14, no. 4, pp. 5257-5264, 2022.
[40] E. Ayoman, “Detonation performance of RDX+Al+Zn0.5Co0.5Fe2O4 nanocomposite predicted from reactive molecular dynamics simulations”, Fuel and Combustion, vol. 17, no. 3, 2024.
