تحلیل انرژی مصرفی ویژه در فرایند خشک کردن کیوی با روش فروسرخ
زهرا شیخانی نژادفلاح
1
(
گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان
)
مرتضی زنگنه
2
(
گروه مهندسی مکانیزاسیون، دانشکده کشاورزی، دانشگاه گیلان
)
نرگس بنائیان
3
(
دانشکده علوم کشاورزی، دانشگاه گیلان
)
کلید واژه: آنزیم بری, ریزموج, زمان ریزموج, زمان فروسرخ, انرژی مصرفی ویژه,
چکیده مقاله :
خشککردن میوهجات جزئی از صنایع تبدیلی است که ازجمله روشهای نگهداری طولانیمدت محصولات، محسوب میشود. برخی از مشکلات اساسی فرایند خشککردن محصولات کشاورزی، مصرف انرژی بالا و مدتزمان طولانی خشک شدن محصولات است. با طراحی مناسب خشککن، انتخاب تیمارهای مناسب و کنترل فرایند خشک شدن میتوان علاوه بر ارتقای کیفیت مواد خشکشده، هزینه عملیاتی فرایند خشککردن را نیز کاهش داد هدف این تحقیق بررسی اثر تغییر توان و زمان فروسرخ، توان و زمان ریزموج و آنزیم بری بر انرژی ویژه مصرفی در خشککردن کیوی بر میزان انرژی مصرفی ویژه است. هر تیمار از 5 عامل تشکیل شده که هر یک از عوامل دارای دو سطح است. بدین ترتیب مجموعاً 32 تیمار به دست آمد. خشککردن با روش فروسرخ، با استفاده از یک دستگاه خشککن فروسرخ که در این مطالعه طراحی و ساختهشده بود انجام گرفت. این مطالعه به صورت آزمایش فاکتوریل اختلاط یافته (اختلاط ناقص) در قالب طرح بلوکهای کامل تصادفی انجام شد. برای بررسی نرمال بودن دادهها از آزمون شاپیرو ویلک استفاده شد. مقایسه میانگینهای دو سطح هر عامل اصلی به روش t مستقل انجام گرفت. همچنین برای مقایسه میانگین اثرات دوگانه و سهگانه از آزمون تعقیبی توکی در سطح معناداری 05/0 استفاده شد. محاسبات در نرم افزار 26IBM SPSS Statistics انجام گرفت. نتیجه آزمون شاپیرو ویلک نشان داد که انرژی ویژه مصرفی محاسبه شده با استفاده از اعداد برداشت شده دارای توزیع نرمال نیست. پس از نرمالسازی دادهها آزمون تجزیه واریانس انجام شد. نتایج حاصل از تجزیه واریانس دادهها نشان داد که اثر هر 5 عامل در سطح 5% معنیدار شده است. نتایج مقایسه میانگین نشان داد، تیمار دارای توان فروسرخ (250 وات)، زمان فروسرخ (10 دقیقه) و اعمال فرایند آنزیم بری دارای کمترین مقدار انرژی مصرفی ویژه به میزان 26/9 مگا ژول بر کیلوگرم است.
چکیده انگلیسی :
Drying of fruits is a part of transformation industries, which is one of the methods of long-term preservation of products. Some of the basic problems of the drying process of agricultural products are high energy consumption and long drying time. With the proper design of the dryer, choosing the right treatments and controlling the drying process, in addition to improving the quality of the dried materials, the operating cost of the drying process can also be reduced. Consumption in drying kiwi depends on the amount of energy consumed. Each treatment consists of 5 factors, each of which has two levels. In this way, a total of 32 treatments were obtained. Infrared drying was done using an infrared dryer that was designed and built in this study. This study was conducted as a mixed factorial experiment (incomplete mixing) in the form of a randomized complete block design. The Shapiro-Wilk test was used to check the normality of the data. Comparison of averages of two levels of each main factor was done by independent t method. Also, to compare the average of double and triple effects, Tukey's post hoc test was used at a significance level of 0.05. Calculations were done in IBM SPSS Statistics 26 software. The result of the Shapiro-Wilk test showed that the specific energy consumption calculated using the collected numbers does not have a normal distribution. After data normalization, analysis of variance test was performed. The results of data variance analysis showed that the effect of all 5 factors was significant at the 5% level. The results of the average comparison showed that the treatment with infrared power (250 watts), infrared time (10 minutes) and applying the enzyme process has the lowest specific energy consumption amounting to 9.26 megajoules/kg.
1. Mohammadi, I., Tabatabaekoloor, R. & Motevali, A. (2019). Investigating Some Quality and Thermodynamic Parameters of Kiwifruit Thin Layer Drying in an Air Recycling Dryer Equipped with Heat Pump. Iranian Journal of Biosystems Engineering (Iranian Journal Of Agricultural Sciences), 50(2), 331-342. (In Persian)
2. Aidani, E., Haddad Khodaparast, M. H. & Kashaninejad, M. (2017). Characterization of Dried Kiwi by Infrared Systems and Process Modeling. Journal of food technology and nutrition, 14(56), 53-66. (In Persian)
3. Kholghi Eshkalak, A., Ghasemnezhad, M., Fotouhi Ghazvini, R. & Sabouri, A. (2021). The Study of Bud Break Percentage and Aberrant Fruit Shape Incidence in Some Hayward Kiwifruit Vineyard in Guilan Province. Journal of Plant Production Research, 28(2), 167-181. (In Persian)
4. Karami, A., Faryabi, M. & Ahmadvand, M. (2019). Analysis of the Consequences of the Establishment of Transformational and Complementary Industries in the Agricultural Sector, Case: The Central Part of Jiroft City. Journal Space Economy & Rural Development, 8(28), 223-238. (In Persian)
5. Shokhi, Z., Sahneh, B. & Najafi, A. A. (2022). The Role of Conversion and Complementary Industries (Processing of Date Products) in Improving the Sustainable Livelihood of Rural Households for Study: Villages of Ghirokarzin. Arid regions Geographic Studies, 12(46), 31-52. (In Persian)
6. Jannatkhah, j., Ghaebi, h. & Najafi, b. (2018). Design and Development of Asolar Dryer Augmented with Phase Change Materials (Pcm). Agricultural Mechanization And Systems Research (Journal Of Agricultural Engineering Research), 18(68), 89-106. (In Persian)
7. Vartehparvar, V., Kianmehr, M., Arabhosseini, A. & Hassan-Beygi, R. (2014). Energy Analysis of Combined Fluidized-Batch Bed Dryer. Journal of Innovation in Food Science and Technology, 5(4), 17-23. (In Persian)
8. Garba, U., Kaur, S., Gurumayum, S. & Rasane, P. (2015). Effect of Hot Water Blanching Time and Drying Temperature on the Thin Layer Drying Kinetics and Anthocyanin Degradation of Black Carrot (Daucus Carota L.) Shreds. Food Technology and Biotechnology, 53.
9. Tabaei, A., Hazbawi, I. & Shahbazi, F. (2020). Modeling and Optimization of Persimmon Drying Using Response Surface Methodology. Food Science and Technology, 17(98), 109-119. (In Persian)
10. Hasani, A., Khoshtaghaza, M. H. & Ebadi, M. T. (2020). Effect of Different Drying Methods (Microwave Drying, Shade and Sun Drying) on the Quality of Sumac Fruit (Rhus Coriaria L.). Iranian Journal Of Medicinal And Aromatic Plants, 36(1), 142-154. (In Persian)
11. Salehi, f., Gohari ardabili, a., Nemati, a. & Latifi darab, r. (2017). Modeling of Strawberry Drying Process Using Infrared Dryer by Genetic Algorithm–Artificial Neural Network Method. Iranian journal of food science and technology, 14(69), 105-114. (In Persian)
12. Ahmadi Ghavidelan, M. & Amiri Chayjan, R. (2017). Optimization of Hazelnut Kernel Drying in an Infrared Dryer with Microwave Pretreatment Using Response Surface Methodology. Iranian journal of food science and technology, 14(64), 165-178. (In Persian)
13. Azadbakht, M., Noshad, F., Mahmoodi, M. J. & Ghazagh Jahed, R. (2019). Microwave Dryer Energy Analysis with Ohmic and Blanching Pretreatments in Drying Carrots. Journal of food science and technology(Iran), 16(94), 187-196. (In Persian)
14. Khayati, S. & Amiri Chayjan, R. (2016). Prediction of Some Thermal, Physical and Mechanical Properties of Terebinth Fruit after Semi-Industrial Continuous Drying Using Artificial Neural Networks. Iranian Journal Of Food Science And Technology, 13(52), 161-172. (In Persian)
15. Kaveh, M. (2017). Using Artificial Neural Networks (Anns) Method in Investigation and Estimation of Some Drying Characteristics of Eggplant and Turnip in a Combined Microwave – Convective Dryer. Iranian Journal of Food Science & Technology, 14(70), 27-45. (In Persian)
16. Safari, M., Amiri Chayjan, R. & Alaei, B. (2017). Modeling Some Properties of Almond Kernels in a Semi Industrial Continuous Dryer. Iranian Journal Of Food Science And Technology, 14(65), 25-38. (In Persian)
17. Kaveh, M., Jahanbakhshi, A., Golpour, I., Gandshmin, T., Abbaspour-Gilandeh, Y. & Jahedi Rad, S. (2019). Prediction of White Mulberry Drying Kinetics in Microwave Convective Dryer: A Comparative Study between Mathematical Model, Artificial Neural Network and Anfis. Iranian Journal Of Food Science And Technology, 16(88), 201-219. (In Persian)
18. Jafari, H., Kalantari, D. & Azadbakht, M. (2015). Investigation of Moisture Changing and Breakage Percent of Paddy Seeds by Using of Microwave Dryer. Innovative Food Technologies, 2(4), 63-74. (In Persian)
19. Fadaie, m., Hosseini ghaboos, S. H. & Beheshti, b. (2020). Characterization of Dried Persimmon Using Infrared Dryer and Process Modeling Using Genetic Algorithm-Artificial Neural Network Method. Iranian journal of food science and technology, 17(100), 189-200. (In Persian)
20. Salehi, f. & Hosseini ghaboos, S. H. (2019). Modeling of Peach Drying Process Using Infrared Dryer by Genetic Algorithm Method. Journal of food technology and nutrition, 16(63), 17-26. (In Persian)
21. Eshraghi, E., Kashani-Nejad, M., Maghsoudlou, Y., Beiraghi-Toosi, S. & Alami, M. (2013). Studying the Effect of Osmosis-Ultrasound Compound Pre-Treatment on Drying Kiwi Fruit Sheets. Iranian Food Science and Technology Research Journal, 9(4), 273-279. (In Persian)
22. Taghinezhad, E., Kaveh, M. & Szumny, A. (2021). Thermodynamic and Quality Performance Studies for Drying Kiwi in Hybrid Hot Air-Infrared Drying with Ultrasound Pretreatment. Applied Sciences, 11(3), 1297.
23. Abedi, A. (2019). Economize and Optimization of the Drying Process of Irradiate Pretreatment on Kiwi Slices by the Response Surface Method in Combination with the Principal Components Analysis. Journal of food science and technology(Iran), 16(90), 141-151. (In Persian)
24. Gholami Parshokohi, M., Merzanezhad, E., Ahmad Beigi, A. H. & Salimi Bani, M. (2018). Influence of Temperature and Air Velocity Changes on Drying Process of Peanut in Hot Air Dryer. Journal Of Food Technology And Nutrition, 15(59), 107-115. (In Persian)
25. Yousefi, G., Djomeh, Z. E. & Karami, Z. (2016). Modeling and Optimization of Effective Factors in Drying on Quality Properties of Black Raspberry (Rabus Fruticocus L.) with Response Surface Methodology. (In Persian)
26. Ye, L., El-Mesery, H. S., Ashfaq, M. M., Shi, Y., Zicheng, H. & Alshaer, W. G. (2021). Analysis of Energy and Specific Energy Requirements in Various Drying Process of Mint Leaves. Case Studies in Thermal Engineering, 26, 101113.
27. Yazdi samadi, B., Rezaei, A. & Valyzadeh, M. (2006). Statistical Designs in Agricultural Research. Tehran: Tehran University Publications (In Persian)
28. Abbaspour‐Gilandeh, Y., Jahanbakhshi, A. & Kaveh, M. (2020). Prediction Kinetic, Energy and Exergy of Quince under Hot Air Dryer Using Anns and Anfis. Food science & nutrition, 8(1), 594-611.
29. Khafajeh, H., Banakar, A. & Zarein, M. K., M. H. (2014). Investigation of Mulberry Drying Kinetics and Moisture Diffusivity under Microwave Oven. Journal of food science and technology(Iran), 11(45), 143-150. (In Persian)
30. Delangiz, M., Shahiri Tabarestani, M., Movagharnejad, K., (2023). Drying of Shitake Mushrooms Using a Combination of Convective-Infrared Dryer. Iranian Chemical Engineering Journal, 22(127), 39-54. (In Persian)
31. Satorabi, M., Salehi, F., Rasouli, M., (2021). Investigation of the effects of coating with xanthan and Balangu seed gums on the drying time of apricot slices in infrared system. Journal of food science and technology, 18(11):295-303. (In Persian)
32. Satorabi, M., Salehi, F., (2022). Drying process modeling of peach slices coated with basil seed and xanthan gums by infrared system. Journal of food Research, 32(3):17-28. (In Persian)
33. Aidani, E., Haddad Khodaparast, M.H., & Kashaninejad, M. (2017). Characterization of dried kiwi by infrared systems and process modeling. Journal of food technology and nutrition, 14(4 (56)), 53-66. (In Persian)
34. Li, J., Wang, L., Wang, H., Wei, L., & Li, J. (2023). Effects of microwave power and time on the specific energy consumption of kiwi fruit drying. Food and Bioproducts Processing, 122, 56-62.
35. Chandra Das, P., Baik, O. Tabil, L. (2024). Microwave-infrared drying of cannabis (Cannabis sativa L.): Effect on drying characteristics, energy consumption and quality. Industrial Crops and Products. doi:10.1016/j.indcrop.2024.118215.
36. Sheykhani Nejad Fallah, Z., Zanganeh, M. & Banaeian, N. (2023). Evaluation of Kiwi drying energy indicators in semi-industrial fixed bed dryer equipped with phase change materials. Agricultural Research, Education and Extension Organization. 23(84): 73-90. (In Persian).