اثر افزایش پارامتر پوشش دهندگی-لیزری بر خواص الکترونی و نوری چاه کوانتومی دوگانه سهموی باند-ظرفیتی GaAsSb/GaAs
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو موادسهیلا حقیقی 1 , آزاده حقیقت زاده 2 , امین عطارزاده 3
1 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - مرکز تحقیقات مهندسی سطح پیشرفته و نانومواد، گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
3 - گروه علوم پایه، موسسه آموزش عالی جهاد دانشگاهی خوزستان، ایران
کلید واژه: پارامتر پوشش دهندگی-لیزری, جرم وابسته به موقعیت, چاه کوانتومی , حفره سنگین, خواص نوری غیرخطی ,
چکیده مقاله :
در این مطالعه، خواص الکترونی و نوری چاه کوانتومی دوگانه سهموی باند- ظرفیتی GaAsSb/GaAs پوشش دهی شده با لیزر مورد پژوهش قرار گرفتند. اثر افزایش پارامتر پوشش دهندگی – لیزری بر حالت های مقید الکترونی و توابع موج متناظر با استفاده از روش اجزای محدود (FEM) در نرم افزار کامسول مالتی فیزیکس و در تقریب جرم موثر وابسته به موقعیت با در نظر گرفتن سری فوریه- فلوکت و تبدیل کرامرز- هنبرگر بررسی شد. عبارتی تحلیلی برای توصیف جرم موثر وابسته به موقعیت حفره سنگین به عنوان تابعی از هندسه چاه برای اولین بار توسعه داده شد.حالت های های مقید الکترونی حفره سنگین با در نظز گرفتن چگالی احتمال حضور در چاه کوانتومی مطالعه شدند. نتایج الکترونی بدست آمده گذاری را از یک چاه کوانتومی دوگانه با پهنای سد مرکزی صفر به یک نوع پتانسیل سه گانه بعد از اعمال میدان لیزری و سپس بازگشت به یک نوع چاه کوانتومی دوگانه با یک سد مرکزی گسترده شده هنگامی که پارامتر پوشش دهندگی – لیزری افزایش یافته است نشان می دهد . مشخصه های جذب و شکست نوری خطی و غیرخطی مرتبه سوم با استفاده از روش ماتریس چگالی و با در نظر گرفتن یک سیستم دو ترازه برای تراز پایه و اولین حالت برانگیخته مطالعه شدند.
In this study, electronic and optical properties of a laser-dressed double GaAsSb/GaAs parabolic valence-band quantum well were investigated. The effect of increasing laser-dressing parameter on electronic bound states and the corresponding wave functions was surveyed using the Finite Element Method (FEM) in COMSOL Multiphysics and the position-dependent effective mass approximation considering Floquet series and Kramers-Henneberger transformation. An analytical expression was developed to describe the position-dependent effective mass of a heavy hole as a function of the well's geometry for the first time. The electronic bound states of a heavy hole were studied by considering the probability density of the presence in the quantum well. The obtained electronic results showed a transition from a double quantum well with a zero barrier-width into a triple-type profile after the application of the laser field, and then a return into a double-type well with a wide central barrier as the laser-dressing parameter increased. The linear and the third-order nonlinear optical absorption coefficients and refraction index were studied by density matrix method taking into account a two-level system for the ground and the first-excited states.
[1] T.S. Wang, J.T. Tsai, K.-I. Lin, J.-S. Hwang, H.H. Lin, L.C. Chou, Characterization of band gap in GaAsSb/GaAs heterojunction and band alignment in GaAsSb/GaAs multiple quantum wells, Mater. Sci. Eng. B. 147 (2008) 131–135.
[2] J. Todorovic, H. Kauko, L. Ahtapodov, A.F. Moses, P. Olk, D.L. Dheeraj, B.O. Fimland, H. Weman, A.T.J. Van Helvoort, The effects of Sb concentration variation on the optical properties of GaAsSb/GaAs heterostructured nanowires, Semicond. Sci. Technol. 28 (2013) 115004.
[3] X. Wen, A. Arabhavi, W. Quan, O. Ostinelli, C. Mukherjee, M. Deng, S. Frégonèse, T. Zimmer, C. Maneux, C.R. Bolognesi, Performance prediction of InP/GaAsSb double heterojunction bipolar transistors for THz applications, J. Appl. Phys. 130 (2021) 34502.
[4] A. Sharma, T.D. Das, Electronic band structure and optical properties of GaAsSb/GaAs for optoelectronic device applications: A 14 band k.p study, Opt. Mater. (Amst). 112 (2021) 110734.
[5] W.-P. Hong, S.-H. Park, Optical anisotropy in type-II (110)-oriented GaAsSb/GaAs quantum wells, Solid State Commun. 314 (2020) 113934.
[6] X. Gao, X. Fang, J. Tang, D. Fang, D. Wang, X. Wang, R. Chen, S. Xu, Z. Wei, The strain, energy band and photoluminescence of GaAs0. 92Sb0.08/Al0. 3Ga0. 7As multiple quantum wells grown on GaAs substrate, Solid State Commun. 309 (2020) 113837.
[7] U. Yesilgul, F.A.T.H. Ungan, E.B. r Al, E.S.N. Kasapoglu, H.N. Sari, I. Sökmen, Effects of magnetic field, hydrostatic pressure and temperature on the nonlinear optical properties in symmetric double semi-V-shaped quantum well, Opt. Quantum Electron. 48 (2016) 1–11.
[8] A.K. Panda, S.K. Palo, N. Sahoo, T. Sahu, Electric field induced non-linear multisubband electron mobility in V-shaped asymmetric double quantum well structure, Philos. Mag. 100 (2020) 512–527.
[9] X. Li, Y. Li, H. Wang, W. Liu, J. Fu, Electro-optical control of spin-orbit coupling in AlInAs/GaInAs single and double quantum wells, Phys. Lett. A. 494 (2024) 129280.
[10] A. Shaer, M.B. Yücel, E. Kasapoglu, Hydrostatic pressure and temperature dependent optical properties of double inverse parabolic quantum well under magnetic field, Phys. B Condens. Matter. (2024) 416057.
[11] J. Wang, K. Guo, Energy spectrum and optical properties in a double parabolic quantum ring: Effects of the impurity, the magnetic field and the spin-orbit interaction, Opt. Laser Technol. 174 (2024) 110576.
[12] N.A. Althumairi, Optical rectification and second harmonic generation in CdSe/MgSe asymmetric double quantum wells, Heliyon. 10 (2024).
[13] A.N. Ikot, I.B. Okon, U.S. Okorie, E. Omugbe, A.-H. Abdel-Aty, L.F. Obagboye, A.I. Ahmadov, N. Okpara, C.A. Duque, H.Y. Abdullah, Exact solutions of position-dependent mass Schrodinger equation with pseudoharmonic oscillator and its thermal properties using extended Nikiforov-Uvarov method, Zeitschrift Für Angew. Math. Und Phys. 75 (2024) 18.
[14] S.M. Nagiyev, A.M. Jafarova, E.I. Jafarov, The Wigner function of a semiconfined harmonic oscillator model with a position-dependent effective mass, J. Math. Phys. 65 (2024).
[15] E. Kasapoglu, M.B. Yücel, C.A. Duque, M.E. Mora-Ramos, Simultaneous effects of the position dependent mass and magnetic field on quantum well with the improved Tietz potential, Phys. B Condens. Matter. (2024) 415797.
[16] S.E. Okan, H. Akbas, S. Aktas, M. Tomak, Binding energies of helium-like impurities in parabolic quantum wells under an applied electric field, Superlattices Microstruct. 28 (2000) 171–176.
[17] E.C. Niculescu, L.M. Burileanu, Nonlinear optical absorption in inverse V-shaped quantum wells modulated by high-frequency laser field, Eur. Phys. J. B. 74 (2010) 117–122.
[18] A. Haghighatzadeh, A. Attarzadeh, A. Salman Durmuslar, E.B. Al, F. Ungan, Modeling of electronic spectra and optical responses of a semiconductor AlGaAs/GaAs quantum well with three-step barriers: the role of external perturbations and impurity, Eur. Phys. J. Plus. 139 (2024) 353.
[19] S. Maleki, A. Haghighatzadeh, A. Attarzadeh, Linear and nonlinear optical properties of laser-dressed V-shaped gallium arsenide/gallium arsenide antimonide/gallium arsenide quantum wells with different dressing parameters: a theoretical modeling, J. Nanophotonics. 18 (2024) 26001.
[20] M. Sayrac, H. Dakhlaoui, W. Belhadj, F. Ungan, Effect of structural parameters and applied external fields on the third harmonic generation coefficient of AlGaAs/GaAs three-step quantum well, Eur. Phys. J. Plus. 139 (2024) 1–10.
[21] T. Sahu, A.K. Panda, S. Palo, Parabolic double quantum well structures: Study of multisubband electron mobility, in: 2012 Int. Conf. Emerg. Electron., IEEE, 2012: pp. 1–4.
[22] J. Zhang, J. Tang, Y. Kang, F. Lin, D. Fang, D. Wang, X. Fang, X. Wang, Z. Wei, Structural and spectroscopy characterization of coaxial GaAs/GaAsSb/GaAs single quantum well nanowires fabricated by molecular beam epitaxy, CrystEngComm. 21 (2019) 4150–4157.
[23] M. Levinshtein, Handbook series on semiconductor parameters, World Scientific, 1997.
[24] A. Radu, Laser-dressing of electronic quantum states in graded semiconductor nanostructures, Solid State Commun. 157 (2013) 11–15.
[25] F.A.T.H. Ungan, S. Pal, M.K. Bahar, M.E. Mora-Ramos, Nonlinear optical properties of morse quantum well modulated by THz laser fields, Phys. E Low-Dimensional Syst. Nanostructures. 113 (2019) 86–91.
[26] F. Ungan, U. Yesilgul, S. akiro lu, E. Kasapoglu, A. Erol, M.C. Arikan, H. Sar, I. Sökmen, Effects of an intense, high-frequency laser field on bound states in Ga1- xInxNyAs1- y/GaAs double quantum well, Nanoscale Res. Lett. 7 (2012) 606.
[27] A. Radu, E.C. Niculescu, M. Cristea, Laser dressing effects on the energy spectra in different shaped quantum wells under an applied electric field, J Optoelectron Adv Mater. 10 (2008) 2555.
[28] F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. da Silva Jr, Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well, J. Appl. Phys. 105 (2009) 123111.
[29] J.A. Vinasco, A. Radu, E. Niculescu, M.E. Mora-Ramos, E. Feddi, V. Tulupenko, R.L. Restrepo, E. Kasapoglu, A.L. Morales, C.A. Duque, Electronic states in GaAs-(Al, Ga) As eccentric quantum rings under nonresonant intense laser and magnetic fields, Sci. Rep. 9 (2019) 1–17.
[30] J.A. Osorio, D. Caicedo-Paredes, J.A. Vinasco, A.L. Morales, A. Radu, R.L. Restrepo, J.C. Martínez-Orozco, A. Tiutiunnyk, D. Laroze, N.N. Hieu, Pyramidal core-shell quantum dot under applied electric and magnetic fields, Sci. Rep. 10 (2020) 1–14.
[31] A.B. COMSOL, COMSOL multiphysics® v. 5.4 reference manual. Stockholm, Sweden, (2019).
[32] C. Multiphysics, Comsol Multiphysics Reference Guide COMSOL, Inc., Burlington, MA, USA. (2012).
[33] C. Multiphysics, C. Module, COMSOL multiphysics user’s guide, Version: COMSOL Multiphysics. 3 (2014).
[34] U. Yesilgul, F. Ungan, S.L. Sakiroglu, M.E. Mora-Ramos, C.A. Duque, E.S.N. Kasapoglu, H. Sar, I. Sӧkmen, Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field, J. Lumin. 145 (2014) 379–386.
[35] E.S.N. Kasapoglu, H. Sari, I. Sӧkmen, J.A. Vinasco, D. Laroze, C.A. Duque, Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots, Phys. E Low-Dimensional Syst. Nanostructures. 126 (2021) 114461.
[36] E.S.N. Kasapoglu, F. Ungan, U. Yesilgul, The effects of the intense laser field on the optical properties of the asymmetric parabolic quantum well, Opt. Quantum Electron. 49 (2017) 175.
[37] B. Gonzalez, V. Palankovski, H. Kosina, A. Hernandez, S. Selberherr, An energy relaxation time model for device simulation, Solid. State. Electron. 43 (1999) 1791–1795.
[38] E.B. Al, E. Kasapoglu, H.N. Sari, I. Sӧkmen, Optical properties of spherical quantum dot in the presence of donor impurity under the magnetic field, Phys. B Condens. Matter. 613 (2021) 412874.
[39] J. Lao, K. Guo, J. Lan, X. He, Influence of terahertz field on optical absorption coefficients and refractive index changes in double semi-V-shaped quantum wells, JOSA B. 37 (2020) 2308–2313.
[40] R. En-nadir, H. El Ghazi, W. Belaid, A. Jorio, I. Zorkani, Intraconduction band-related optical absorption in coupled (In, Ga) N/GaN double parabolic quantum wells under temperature, coupling and composition effects, Results Opt. 5 (2021) 100154.
[41] N. Sahoo, A.K. Sahu, S.K. Palo, Electron mobility in asymmetric coupled AlxGa1-xAs parabolic quantum well structure-Impact of external electric field, Phys. B Condens. Matter. 608 (2021) 412798.