A novel silicotungstic acid-containing ionic liquid immobilized on graphene oxide nanosheets: Preparation, characterization, and first catalytic application in the synthesis of 1,8‐dioxo‐octahydroxanthenes
Simin Bozorgnia
1
(
Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
)
Abolghasem Davoodnia
2
(
Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
)
Mehdi Pordel
3
(
Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
)
S. Ali Beyramabadi
4
(
Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
)
کلید واژه: functionalized graphene oxide, silicotungstic acid, 1, 8-dioxo-octahydroxanthenes, solvent-free conditions,
چکیده مقاله :
A novel functionalized graphene oxide (GO) nanosheets containing silicotungstic anion H3SiW12O40¯ (H3SiW), was successfully prepared by grafting of (3-chloropropyl)triethoxysilane (3-CPTS) on GO nanosheets followed by reaction with an excess amount of imidazole and finally interaction with silicotungstic acid (H4SiW12O40, denoted as H4SiW). The prepared material, denoted as GO-Imid-H3SiW, was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analysis. The activity of this new material as a novel catalyst was also evaluated in the synthesis of 1,8-dioxo-octahydroxanthenes by reaction of dimedone with various aromatic aldehydes under solvent-free conditions. The results demonstrated a significant catalytic performance of the catalyst for this transformation under solvent-free conditions, giving high yields of the desired products over relatively short reaction times. In addition, the catalyst could be easily recovered from the reaction mixture by simple filtration and can be reused many times with no significant loss of its catalytic activity.
چکیده انگلیسی :
A novel functionalized graphene oxide (GO) nanosheets containing silicotungstic anion H3SiW12O40¯ (H3SiW), was successfully prepared by grafting of (3-chloropropyl)triethoxysilane (3-CPTS) on GO nanosheets followed by reaction with an excess amount of imidazole and finally interaction with silicotungstic acid (H4SiW12O40, denoted as H4SiW). The prepared material, denoted as GO-Imid-H3SiW, was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analysis. The activity of this new material as a novel catalyst was also evaluated in the synthesis of 1,8-dioxo-octahydroxanthenes by reaction of dimedone with various aromatic aldehydes under solvent-free conditions. The results demonstrated a significant catalytic performance of the catalyst for this transformation under solvent-free conditions, giving high yields of the desired products over relatively short reaction times. In addition, the catalyst could be easily recovered from the reaction mixture by simple filtration and can be reused many times with no significant loss of its catalytic activity.
[1] A.G. KSN, Nat. Mater., 2007, 6, 183.
[2] O. C. Compton, S. T. Nguyen, Small 2010, 6, 711.
[3] Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, S. Zhang, Nano Lett. 2015, 15, 6974.
[4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902.
[5] A. Benvidi, M. Dehghan Tezerjani, A. Dehghani Firouzabadi, M. Rezaeinasab, M. Mazloum Ardakani, A. H. Kianfar, M. Sedighipoor, J. Chin. Chem. Soc. 2018, 65, 603.
[6] D. Cai, M. Song, J. Mater. Chem. 2010, 20, 7906.
[7] B. Tang, G. Hu, J. Power Sources 2012, 220, 95.
[8] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Y. H. Lee, Adv. Funct. Mater. 2009, 19, 1987.
[9] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
[10] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
[11] S. Kumari, A. Shekhar, D. D. Pathak, RSC Adv. 2014, 4, 61187.
[12] J. Li, H. Xu, Talanta 2017, 167, 623.
[13] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.
[14] E. Teymoori, A. Davoodnia, A. Khojastehnezhad, N. Hosseininasab, Iran. Chem. Commun., 2019, 7, 271.
[15] M. Misono, Catal. Rev. Sci. Eng., 1987, 29, 269.
[16] P.M. Rao, A. Wolfson, S. Kababya, S. Vega, M. Landau, J. Catal., 2005, 232, 210.
[17] A. Sethukumar, C. U. Kumar, B. A. Prakasam, Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1652.
[18] Y. Song, Y. Yang, J. You, B. Liu, L. Wu, Y. Hou, W. Wang, J. Zhu, Chem. Pharm. Bull. 2013, 61, 167.
[19] H. Wang, L. Lu, S. Zhu, Y. Li, W. Cai, Curr. Microbiol. 2006, 52, 1.
[20] A. Javid, M. M. Heravi, F. F. Bamoharram, J. Chem. 2011, 8, 910.
[21] S. Kamble, G. Rashinkar, A. Kumbhar, R. Salunkhe, Green Chem. Lett. Rev. 2012, 5, 101.
[22] B. Das, J. Kashanna, R. A. Kumar, P. Jangili, Synth. Commun. 2012, 42, 2876.
[23] M. Khoshnevis, A. Davoodnia, A. Zare-Bidaki, N. Tavakoli-Hoseini, Synth. Reac. Inorg. Metal-Org. Nano-Met. Chem. 2013, 43,1154.
[24] P. Sivaguru, A. Lalitha, Chin. Chem. Lett. 2014, 25, 321.
[25] Z. Lasemi, E. Mehrasbi, Res. Chem. Intermed. 2015, 41, 2855.
[26] K. P. Boroujeni, Z. Heidari, R. Khalifeh, Acta Chim. Slov. 2016, 63, 602.
[27] V. I. Pârvulescu, C. Hardacre, Chem. Rev., 2007, 107, 2615.
[28] T. L. Greaves, C. J. Drummond, Chem. Rev., 2015, 115, 11379.
[29] A. Davoodnia, M. M. Heravi, Z. Safavi-Rad, N. Tavakoli-Hoseini, Synth. Commun., 2010, 40, 2588.
[30] A. Davoodnia, M. M. Heravi, L. Rezaei-Daghigh, N. Tavakoli-Hoseini, Monatsh. Chem. 2009, 140, 1499.
[31] A. Davoodnia, M. Bakavoli, R. Moloudi, N. Tavakoli-Hoseini, M. Khashi, Monatsh. Chem. 2010, 141, 867.
[32] A. Emrani, A. Davoodnia, N. Tavakoli-Hoseini, Bull. Korean Chem. Soc. 2011, 32, 2385.
[33] G. Yassaghi, A. Davoodnia, S. Allameh, A. Zare-Bidaki, N. Tavakoli-Hoseini, Bull. Korean Chem. Soc. 2012, 33, 2724.
[34] A. Davoodnia, M. Khashi, N. Tavakoli-Hoseini, Chin. J. Catal. 2013, 34, 1173.
[35] M. Khashi, A. Davoodnia, V. S. Prasada Rao Lingam, Res. Chem. Intermed. 2015, 41, 5731.
[36] M. Fattahi, A. Davoodnia, M. Pordel, Russ. J. Gen. Chem. 2017, 87, 863.
[37] F. Tajfirooz, A. Davoodnia, M. Pordel, M. Ebrahimi, A. Khojastehnezhad, Appl. Organometal. Chem. 2018, 32, Art. No. e3930.
[38] A. Ilangovan, S. Malayappasamy, S. Muralidharan, S. Maruthamuthu, Chem. Cent. J. 2011, 5, 81.
[39] H. Y. Lü, J. J. Li, Z. H. Zhang, Appl. Organometal. Chem. 2009, 23, 165.
[40] F. Rajabi, M. Abdollahi, E. S. Diarjani, M. G. Osmolowsky, O. M. Osmolovskaya, P. Gómez-López, A. R. Puente-Santiago, R. Luque, Materials 12 (2019) 2386.
[41] S. Kantevari, R. Bantu, L. Nagarapu, Arkivoc 16 (2006) 136.
[42] M. A. Zolfigol, R. Ayazi-Nasrabadi, S. Baghery, V. Khakyzadeh, S. Azizian, J. Mol. Catal. A. Chem. 418-419 (2016) 54.
[43] S. S. Kahandal, A. S. Burange, S. R. Kale, P. Prinsen, R. Luque, R. V. Jayaram, Catal. Commun. 97 (2017) 138.
[44] K. Gong, H. Wang, S. Wang, Y. Wang, J. Chen, Chin. J. Catal. 36 (2015) 1249.