Vibration and Buckling of Double-Graphene Sheet-Systems with an Attached Nanoparticle Based on Classical and Mindlin Plate Theories Considering Surface Effects
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیک
1 - استادیار، دانشکده مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر
کلید واژه: Vibration, Graphene sheet, Coupled system, Surface effect, Classic theory, Mindlin theory,
چکیده مقاله :
Vibration of double-graphene sheet-system is considered in this study. Graphene sheets are coupled by Pasternak elastic medium. Classic and Mindlin plate theories are utilized for modeling the coupled system. Upper sheet carries a moving mass. Governing equations are derived using energy method and Hamilton’s principle considering surface stress effects and nonlocal parameter. Using Galerkin method, figures of frequency versus nonlocal parameter are drawn and the effects of different parameters such as moving mass, surface effects and etc. are discussed. Results show considering surface effects, the frequency of coupled system increases. Also heavier mass and farther mass away from supports will result in lower frequencies
در این تحقیق ارتعاشات دو نانو صفحهی گرافنی کوپل شده به یکدیگر مورد بررسی قرار گرفته است. نانوصفحات توسط محیط الاستیک پاسترناک به یکدیگر مرتبط شدهاند. از تئوریهای ورق کلاسیک و میندلین برای مدلسازی نانوصفحات استفاده شده است. بر روی نانوصفحهی بالایی جرمی قرار دارد. روابط حاکم بر اساس روش انرژی و اصل همیلتون بدست آمده و با در نظر گرفتن تئوریهای اثرات تنش سطح و ارینگن ، بصورت غیرموضعی بیان شدهاند. با استفاده از روش گالرکین نمودارهای فرکانس بر اساس پارامتر مقیاس کوچک رسم شده و تأثیر پارامترهایی چون جرم متحرک، اثرات سطح و ... بحث شدهاند. نتایج نشان میدهند که با در نظر گرفتن اثرات سطح، فرکانس سیستم افزایش مییابد، همچنین اجرام سنگینتر دور از تکیهگاهها، کاهش فرکانس را در بر دارند. [1]Double-Graphene Sheet-System [2]Classic plate theory [3] Mindlin plate theory [4] Surface stress effects [5] Eringen
[1] Ru C.Q., Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium, Journal of the Mechanics and Physics of Solids, vol. 49, 2001, pp. 1265-1279.
[2] Eringen A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, vol. 54, 1983, pp. 4703-4710.
[3] Salehi-Khojin A., Jalili N., Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings, Composites Science and Technology, vol. 68, 2008, pp. 1489-1501.
[4] Mosallaie Barzoki A.A., Ghorbanpour Arani A., Kolahchi R., Mozdianfard M.R., Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core, Applied Mathematical Modelling, vol. 36, 2012, pp. 2983-2995.
[5] Wang D.-H., Wang G.-F., Influence of surface energy on the stiffness of nanosprings, Applied Physics Letters, vol. 98, 2011, pp. 083112-083113.
[6] Lei X.-w., Natsuki T., Shi J.-x., Ni Q.-q., Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B: Engineering, vol. 43, 2012, pp. 64-69.
[7] Wang L., Surface effect on buckling configuration of nanobeams containing internal flowing fluid: A nonlinear analysis, Physica E: Low-dimensional Systems and Nanostructures, vol. 44, 2012, pp. 808-812.
[8] Şimşek M., Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle, Computational Materials Science, vol. 50, 2011, pp. 2112-2123.
[9] Ghorbanpour Arani A., Roudbari M.A., Amir S., Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle, Physica B: Condensed Matter, vol. 407, 2012, pp. 3646-3653.
[10] Shen Z.-B., Tang H.-L., Li D.-K., Tang G.-J., Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Computational Materials Science, vol. 61, 2012, pp. 200-205.
[11] Ghorbanpour Arani A., Shiravand A., Rahi M., Kolahchi R., Nonlocal vibration of coupled DLGS systems embedded on Visco-Pasternak foundation, Physica B: Condensed Matter, vol. 407, 2012, pp. 4123-4131.
[12] Ghorbanpour Arani A., Kolahchi R., Vossough H., Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory, Physica B: Condensed Matter, vol. 407, 2012, pp. 4458-4465.
[13] Ansari R., Sahmani S., Surface stress effects on the free vibration behavior of nanoplates, International Journal of Engineering Science, vol. 49, 2011, pp. 1204-1215.