اتصال آلیاژ آلومینیوم (АМГ6М) توسط دو فرآیند جوشکاری اصطکاکی-اغتشاشی و قوس الکترود تنگستن با گاز خنثی و مقایسه خواص مکانیکی و ریزساختاری آنها
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدعلی اصغر ترابی 1 , تهمینه احمدی 2 , افشین شیرعلی 3 , محمدرضا خانزاده قره شیران 4 , مجید تقیان 5
1 - گروه مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران
2 - گروه مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی،شهرضا، ایران
3 - کارشناس ارشد مهندسی مواد، جوشکاری، بخش عملیات تکمیلی شرکت صنایع هواپیماسازی
4 - گروه مهندسی مواد، واحد شهر مجلسی، دانشگاه آزاد اسلامی، اصفهان، ایران
5 - دکتری تخصصی مهندسی مواد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، ایران
کلید واژه: جوشکاری اصطکاکی اغتشاشی, جوشکاری قوس تنگستن – گاز, آلیاژ آلومینیوم АМГ6М,
چکیده مقاله :
هدف از انجام این تحقیق بررسی امکان جایگزینی فرآیندجوشکاری قوس تنگستن گاز با فرآیندجوشکاری اصطکاکی اغتشاشی جهت اتصال آلیاژ آلومینیم (АМГ6М) میباشد. در این راستا پس از اعمال پارامترهای اولیه برای هر دو فرآیند جوشکاری ضمن دستیابی به پارامترهای بهینه، آزمونهایی مانند آزمون کشش، خمش، رادیوگرافی، سختی سنجی، بررسی ساختاری و بررسی میزان اعوجاج بر روی نمونهها انجام گرفت. نتایج حاصل ازاین تحقیق نشان داد که اندازه دانه بدست آمده برای فلز جوش اصطکاکی اغتشاشی و قوس تنگستن گاز به ترتیب 6 و14 میکرون میباشد که درمقایسه با اندازه دانه درفلز پایه که برابر با 30 میکرون است، ریز شدهاند. استحکام کششی نهایی اتصال در جهت همراستای نورد و عمود بر خط جوش در مورد اتصالات جوش اصطکاکی اغتشاشی نسبت به اتصالات جوش قوس تنگستن گاز به مراتب بالاتر است؛Mpa 364 در مقابلMpa 278. افت سختی در ناحیه فلز جوش تقریبا در هر دو فرآیند جوشکاری اصطکاکی اغتشاشی و قوس تنگستن گاز در یک محدوده بوده است. میزان اعوجاج اندازهگیری شده در جوشکاری اصطکاکی اغتشاشی یک چهارم فرآیندجوشکاری قوس تنگستن گاز میباشد. نتیجه آزمایش خمش نمونه جوش اصطکاکی اغتشاشی از رویه مانند نتیجه آزمایش فلز پایه عاری از ترک میباشد. لذا به منظور افزایش خواص مکانیکی و متالورژیکی و همچنین کاهش اعوجاج اتصالات جوشی در سازه های آلومینیومی، فرایند جوشکاری اصطکاکی اغتشاشی گزینه مناسبی جهت جایگزینی با فرآیند جوشکاری قوس تنگستن گاز تشخیص داده شد.
The purpose of this research is to investigate the possibility of replacement of arc welding under shielding gas with non-consumable Tungsten electrode (TIG) of Al АМГ6М alloy by friction stir welding (FSW). In this regard, after applying primary parameters for both welding processes to obtain optimum parameters, the prepared samples were characterized with Tension, bending, radiography, hardness and distortion tests and also microstructure evaluation. The results of this study showed that the grain size of welding zone of TIG and FSW processes are 14 and 6 µm respectively, which are smaller than the base metal with 30 µm in size. The ultimate tensile strength of the FSW joints in the parallel to rolling direction and in the vertical direction with welding line is much more higher than TIG joints; 364 Mpa versus 278 Mpa. The reduction of microhardness in the welding zone for both process FSW and TIG have been in a range. The amount of distortion measured in the FSW was one-fourth of these values in TIG. The result of bending test of the FSW sample from the plane like to the results of the base metal is crack free. Therefore, in order to improve the mechanical and metallurgical properties, as well as to reduce weld joints distortion in aluminum structures, FSW was considered an appropriate alternative to the replacement of the arc welding under shielding gas with non-consumable tungsten electrode.
[1] G. Mathers, “The welding of aluminum and its alloysˮ, First Edition, Woodhead Publishing Ltd and CRC Press LLC, England, 2002.
[2] R. S. Mishra & Z. Y. Ma, “Friction stir welding and processingˮ, Materials Science and Engineering, Vol. 50, 2005.
[3] M. W. Mahoney, C. G. Rhodes, J. G. Flntoff, R. A. Spurling & Bingel, “Properties of friction–stir–welded 7075 T651 aluminumˮ, Metallurgical and Materials Transactions A, Vol. 29, 1997.
[4] W. J. Arbegast & P. J. Hartley, “Friction stir weld technology development lockheed martin space system–an overviewˮ, Proceeding of the 5th International Conference on Trends in Welding Research, Pine Mountain, GA, 2002.
[5] W. M. Thomas & R. E. Dolby, “Friction stir welding developmentˮ, Proceedings of the 6th International Conference on Trends in Welding Research, Pine Mountain, GA, 2002.
[6] W. M. Thomas et al, “Friction based welding technology for aluminumˮ, Proceeding of the 8th International conference of Aluminum Alloys, Cambridge, UK, 2002.
[7] ف. غروی، "اثر زاویه سطح شانه ابزار روی خواص اتصال در جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 5052"، فرایندهای نوین در مهندسی مواد، سال یازدهم، شماره 3، صفحات 71-61، پاییز 1396.
[8] ف. غروی، ا. ابراهیم زاده و ع. سهیلی، "ارزیابی ریزساختار و خواص مکانیکی اتصال لبه رویهم جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 6061 در سرعت های پیشروی متفاوت"، فرایندهای نوین در مهندسی مواد، سال دهم، شماره 2، صفحات 129-115، تابستان 1395.
[9] Y. G. Kim, H. Fuji, T. Tsumura, T. Komazaki & K. Nakata, “Three defect types in friction stir welding of aluminum die casting alloyˮ, Material Science and Engineering, Vol. 415A, 2006.
[10] V. Balasubramanian, “Relationship between base metal properties and friction stir welding process parametersˮ, Materials Science and Engineering, Vol. 480A, 2003.
[11] M. Ericsson & R. Sandstrom, “Influence of welding speed on the fatigue of friction stir wels and comparison with MIG and TIGˮ, Internatinal Journal of Fatigue, Vol. 25, 2003
[12] M. P. Miles, B. J. Decker & T. W. Nelson, “Formability and strength of friction stir-welded aluminum sheetsˮ, Metallurgical and Materials Trnsaction, Vol. 35A, 2004.
[13] ا. ح. کوکبی، "تکنولوژی جوشکاری"، چاپ اول، انتشارات جامعه ریخته گران، اسفند 1374.
[14] Specification for fusion welding for aerospace applications, AWS D17.1, An American National Standard, 2010.
[15] ASTM Standard E112-28, Standard Test Methods for Dtermining Average Grain Size, ASTM International, USA, 2001.
[16] DIN Handbook, welding 1, Standards Dealing with Filler Metals, Manufacture, Quality and Testing, 1986.
[17] E. Salari, M. Jahazi & A. Khodabandeh, “Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheetsˮ, Materials & Design Vol. 58, 2014.
[18] H. Shirazi, S. Kheirandish & M. A. Safarkhanian, “Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloyˮ, Science Article, 2015.
[19] S. Gholami Shiri & M. Mohammadi, “The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of Friction Stir Welded in AA5052ˮ, Materialia and Design, Vol. 50, 2013.
[20] L. Charit & R. S. Mishra, “Evaluation of microstructure and superplasticity in friction stir processed 5083 Al alloyˮ, Journal of Materials Research, Vol. 19, 2004.
[21] ح. مهر علی، ک. ملک زاده و م. باباخان زاده، "طراحی و شبیهسازی و بهینهسازی جوشکاری اصطکاکی اغتشاشی"، چاپ اول، نشر اخوان، 1390.
[22] م. شمعانیان و ع. اشرفی، سیندوکو، متالورژی جوشکاری، ویرایش دوم، انتشارات دانشگاه صنعتی اصفهان، صفحه 74، تابستان 1385.
[23] C. Fuller, M. Mahoney & W. Bingel, “Friction stir processing of aluminum fusion weldsˮ, Thesis on master of Science, Wichita State University, USA, 2004.
[24] E. Taban & E. Kaluc, “Comparison between microstructure characteristics and joint performance of 5086-H32 aluminium alloy welded by MIG, TIG and friction stir welding processesˮ, Kovove Mater, Vol. 4, 2007.
[25] T. L. Anderson, “Fracture mechanics fundamentals and applicationsˮ, Third Edition, 2009.
[26] G. E. Dieter, “Mechanical metallurgyˮ, Second Edition, 1976.
[27] Scialpi, “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 AAˮ, Materials and Design, Vol. 28, 2007.
_||_