بررسی چقرمگی شکست و حساسیت به نرخ کرنش لایه نازک نیترید تانتالوم تولید شده به روش کندوپاش مغناطیسی واکنشی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدSiavash فیروزآبادی 1 , کامران دهقانی 2 , مالک نادری 3 , فرزاد محبوبی 4
1 - دانشکده مهندسی معدن و متالورژی دانشگاه صنعتی امیرکبیر
2 - دانشگاه صنعتی امیرکبیر
3 - استادیار- دانشگاه امیر کبیر
4 - دانشگاه صنعتی امیرکبیر
کلید واژه: چقرمگی شکست, کندوپاش مگنترونی, پوشش نیترید تانتالم, حساسیت به نرخ کرنش, آزمون نانوفرورونده,
چکیده مقاله :
نیترید تانتالوم به دلیل سختی بالا و مقاومت به خوردگی خوب توانسته است توجهات زیادی را به عنوان پوششی مناسب جلب نماید. اما چقرمگی شکست لایههای نازک نیترید تانتالوم که یکی از عوامل تاثیرگذار بر طول عمر پوشش است، هنوز به خوبی بررسی نشده است. در این پژوهش، برای نخستین بار، چقرمگی شکست، پلاستیسیته و حساسیت به نرخ کرنش لایه های نازک نیترید تانتالوم به کمک روش نانو فرورونده بررسی و ارزیابی شد. در این بررسی نشان داده شده که تغییرات چقرمگی شکست فازهای مختلف نیترید تانتالوم از MPa√m 6/0 تا MPa√m 7/8 بسته به میزان نیتروزن موجود در سیستم لایه نشانی و به تبع آن نیتروژن موجود در شبکه نیترید تانتالوم افزایش مییابد. همچنین دو فاز مهم نیترید تانتالوم یعنی γ-Ta2N و δ-TaN دارای حساسیت به نرخ کرنش منفی و مثبت هستند که میتوان این رفتار را به تغییرات ساختار فازی حین انجام آزمون نسبت داد.
Although tantalum nitride coatings have recently been attracted researchers’ attentions due to their high hardness and corrosion resistance, the fracture toughness and deformation plasticity of thin tantalum nitride film has not been well investigated yet. In this research, for the first time, the fracture toughness, strain rate sensitivity and plasticity of sputter deposited tantalum nitride thin films have been evaluated using nano indentation technique and SEM micrographs. It was shown that the fracture toughness was increases from 0.6 to 7.8 MPa√m with increasing the nitrogen in sputtering chamber. This increase was attributed to the structural evolution from a hexagonal γ-Ta2N phase to the hexagonal ε-TaN and face centered cubic δ-TaN phases, determined by X-Ray Diffraction analysis. The plasticity of the TaN films evaluations indicated that the ratio of plastic work to total work was increased from 50% to 57% and 80%with phase variation from γ-Ta2N to ε-TaN and δ-TaN, respectively.
[1] M. A. Rahmat, R. N. Ibrahim & R. H. Oskouei, “A stress-based approach to analyse fretting fatigue life behaviour of electroless Ni–P coated Al 7075-T6ˮ, Materials Science and Engineering: A, Vol. 631, pp. 126-138, 2015.
[2] F. Benjamin Lewis, “"A study of adhesion of tantalum films at elevated temperatures via advanced ˮ, 2003.
[3] D. E. J. Talbot & J. D. R. Talbot, Corrosion Science and Technology, Second Edition, CRC Press, 2007.
[4] P. J. Kelly & R. D. Arnell, “Magnetron sputtering: a review of recent developments and applicationsˮ, Vol. 56, pp. 159-172, 2000.
[5] C. Petrogalli, L. Montesano, M. Gelfi, G. M. La Vecchia & L. Solazzi, “Tribological and corrosion behavior of CrN coatings: Roles of substrate and deposition defectsˮ, Surface and Coatings Technology, Vol. 258, pp. 878-885, 2014.
[6] S. S. Firouzabadi, K. Dehghani, M. Naderi & F. Mahboubi, “Numerical investigation of sputtering power effect on nano-tribological properties of tantalum-nitride film using molecular dynamics simulationˮ, Applied Surface Science, Vol. 367, pp. 197-204, 2016.
[7] R. Gago, M. Vinnichenko, R. Hübner & A. Redondo-Cubero, “Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter depositionˮ, Journal of Alloys and Compounds, Vol. 672, pp. 529-535, 2016.
[8] H. Gao, Y. Li, C. Li, F. Ma, Z. Song & K. Xu, “Tuning the electronic properties in TaNx/Ag nanocomposite thin filmsˮ, RSC Advances, Vol. 6, pp. 30998-31004, 2016.
[9] N. Srinatha, Y. S. No, V. B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A. M. Umarji & W. K. Choi, “Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin filmsˮ, RSC Advances, Vol. 6, pp. 9779-9788, 2016.
[10] D. Zheng, J. Xiong, P. Guo, S. Wang & H. Gu, “AlN-based film buck acoustic resonator operated in shear mode for detection of carcinoembryonic antigensˮ, RSC Advances, Vol. 6, pp. 4908-4913, 2016.
[11] H. N. Shah, R. Jayaganthan, D. Kaur & R. Chandra, “Influence of sputtering parameters and nitrogen on the microstructure of chromium nitride thin films deposited on steel substrate by direct-current reactive magnetron sputteringˮ, Thin Solid Films, Vol. 518, pp. 5762-5768, 2010.
[12] Y. W. Lin, J. H. Huang & G. P. Yu, “Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputteringˮ, Thin Solid Films, Vol. 518, pp. 7308-7311, 2010.
[13] M. Cheviot, M. Gouné & A. Poulon-Quintin, “Monitoring tantalum nitride thin film structure by reactive RF magnetron sputtering: Influence of processing parametersˮ, Surface and Coatings Technology, Vol. 284, pp. 192-197, 2015.
[14] D. C. Tsai, Z. C. Chang, B. H. Kuo, M. H. Shiao, S. Y. Chang & F. S. Shieu, “Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputteringˮ, Applied Surface Science, Vol. 282, pp. 789-797, 2013.
[15] F. M. Mostafa Alishahi, S. M. Musavi Khoei, M. Aparicio, E. Lopez-Elvira, j. Méndez & Ra. Gago “Structural properties and corrosion resistance of tantalum nitride coatings produced by reactive DC magnetron sputteringˮ, Royal Society of Chemistry, Vol. pp. 2016.
[16] S. Xu, P. Munroe, J. Xu & Z. H. Xie, “The microstructure and mechanical properties of tantalum nitride coatings deposited by a plasma assisted bias sputtering deposition processˮ, Surface and Coatings Technology, Vol. 307, pp. 470-475, 2016.
[17] L. Mendizabal, R. Bayón, E. G-Berasategui, J. Barriga & J. J. Gonzalez, “Effect of N2 flow rate on the microstructure and electrochemical behavior of TaNx films deposited by modulated pulsed power magnetron sputteringˮ, Thin Solid Films, Vol. 610, pp. 1-9, 2016.
[18] D. k. Kim, H. Lee, D. Kim & Y. Keun Kim, “Electrical and mechanical properties of tantalum nitride thin films deposited by reactive sputteringˮ, Journal of Crystal Growth, Vol. 283, pp. 404-408, 2005.
[19] N. R. Moodya, D. Medlina, D. Boehmea, D. P. Norwoodb, “Film thickness effects on the fracture of tantalum nitride on aluminum nitride thin film systems.pdfˮ, Vol. 61. No. 1, pp. 107-118, 1998.
[20] م علیشاهی، ف. محبوبی و س. م. موسوی خوئی، "بررسی رفتار خوردگی پوشش تانتالم لایهنشانی شده به روش کندوپاش مگنترونی"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 2، ص139-151، ص1397.
[21] M. Alishahi, F. Mahboubi, S. M. Mousavi Khoie, M. Aparicio, R. Hübner, F. Soldera & R. Gago, “Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cellsˮ, Journal of Power Sources, Vol. 322, pp. 1-9, 2016.
[22] M. Zhang, Y. F. Zhang, P. D. Rack, M. K. Miller & T. G. Nieh, “Nanocrystalline tetragonal tantalum thin filmsˮ, Scripta Materialia, Vol. 57, pp. 1032-1035, 2007.
[23] T. Elangovan, S. Murugeshan, D. Mangalaraj, P. Kuppusami, S. Khan, C. Sudha, V. Ganesan, R. Divakar & E. Mohandas, “Synthesis and high temperature XRD studies of tantalum nitride thin films prepared by reactive pulsed dc magnetron sputteringˮ, Journal of Alloys and Compounds, Vol. 509, pp. 6400-6407, 2011.
[24] ح. ش، ع. شفیعی، "بررسی و مطالعه سختی و رفتار سایشی سه پوشش TiN، TiCN و TiN-TiCN-TiN اعمال شده بر روی فولاد ابزار D2 به روش تبخیر پرتو الکترونی EB—PVD"، فرآیندهای نوین در مهندسی مواد، ص 131-141، دوره 9 ، 1394.
[25] M. Grosser, M. Münch, H. Seidel, C. Bienert, A. Roosen & U. Schmid, “The impact of substrate properties and thermal annealing on tantalum nitride thin filmsˮ, Applied Surface Science, Vol. 258, pp. 2894-2900, 2012.
[26] Ayerdi, E. Castaño, A. Garcia-Alonso & F. Gracia, “Ceramic pressure sensor based on tantalum thin filmˮ, Sensors and Actuators A: Physical, Vol. 42, pp. 435-438, 1994.
[27] M. Grosser, H. Seidel & U. Schmid, “Microstructure and mechanical properties of sputter deposited tantalum nitride thin films after high temperature loadingˮ, Thin Solid Films, Vol. 629, pp. 69-78, 2017.
[28] R. Chen, J. P. Tu, D. G. Liu, Y. L. Yu, S. X. Qu & C. D. Gu, “Structural and mechanical properties of TaN/a-CNx multilayer filmsˮ, Surface and Coatings Technology, Vol. 206, pp. 2242-2248, 2012.
[29] S. Suresh, T. G. Nieh & B. Choi, “Nano-indentation of copper thin films on silicon substratesˮ, Scripta Materialia, Vol. 41, pp. 951-957, 1999.
[30] M. Laugier, “Effect of hardness on erosion of WC-Co compositesˮ, Journal of Materials Science, Vol. 21, pp. 3548-3550, 1986.
[31] E. Liu, G. Jin, X. Cui, Q. Xiao & T. Shao, “Effect of gas Pressure on the Mechanical Properties of Sputtered TaN Filmsˮ, Physics Procedia, Vol. 50, pp. 438-441, 2013.
[32] T. C. Li, B. J. Lwo, N. W. Pu, S. P. Yu & C. H. Kao, “The effects of nitrogen partial pressure on the properties of the TaNx films deposited by reactive magnetron sputteringˮ, Surface and Coatings Technology, Vol. 201, pp. 1031-1036, 2006.
[33] H. B. Nie, S. Y. Xu, S. J. Wang, L. P. You, Z. Yang, C. K. Ong, J. Li & T. Y. F. Liew, “Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputteringˮ, Applied Physics A Materials Science & Processing, Vol. 73, pp. 229-236, 2001.
[34] B. Selvarajou, B. Kondori, A. A. Benzerga & S. P. Joshi, “On plastic flow in notched hexagonal close packed single crystalsˮ, Journal of the Mechanics and Physics of Solids, Vol. 94, pp. 273-297, 2016.
[35] M. Yoo, “Slip, twinning, and fracture in hexagonal close-packed metalsˮ, Metallurgical Transactions A, Vol. 12, pp. 409-418, 1981.
[36] Y. M. Wang, A. M. Hodge, P. M. Bythrow, T. W. Barbee & A. V. Hamza, “Negative strain rate sensitivity in ultrahigh-strength nanocrystalline tantalumˮ, Applied Physics Letters, Vol. 89, pp. 081903, 2006.
[37] J. Shi, Z. H. Cao & J. G. Zheng, “Size dependent strain rate sensitivity transition from positive to negative in Ti/Ni multilayersˮ, Materials Science and Engineering: A, Vol. 680, pp. 210-213, 2017.
[38] T. Juliano, V. Domnich & Y. Gogotsi, “Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: A statistical studyˮ, Journal of Materials Research, Vol. 19, pp. 3099-3108, 2011.
_||_