تاثیر نانو ذرات هیدروکسی آپاتیت بر تمایز سلول های بنیادی مزانشیمی به سلول های استخوانی در داربست های پلی کاپرولاکتون/کراتین/ هیدروکسی آپاتیت
محورهای موضوعی : بیوموادمحبوبه محمودی 1 , مینا کلانتری 2 , مرجان میرحاج 3
1 - مدیرگروه کارشناسی ارشد مهندسی پزشکی دانشگاه ازاد اسلامی واحد یزد
2 - گروه مهندسی پزشکی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
3 - گروه مهندسی پزشکی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
کلید واژه: "الکتروریسی", "سلولهای بنیادی مزانشیمی", "کراتین", "هیدروکسی آپاتیت", "نانو الیاف",
چکیده مقاله :
بدن انسان به طور خود به خود قادر به ترمیم نقایص استخوانی کوچک است، درحالیکه معایب استخوانی بزرگ بدون مداخلات پزشکی قادر به ترمیم نمیباشد. تلاشهای صورت گرفته در جهت رفع این نقایص، منجر به پایهگذاری علم مهندسی بافت استخوان شده است. در این تحقیق، داربست های پلیکاپرولاکتون/ کراتین و پلیکاپرولاکتون/ کراتین/ هیدروکسی آپاتیت با روش الکتروریسی ساخته شدند و مورد ارزیابی قرار گرفتند. سپس جهت بررسی تمایز سلولهای بنیادی، سلولهای مزانشیمی مشتق از بافت چربی بر روی سطح داربستها کشت داده شد و روند تمایز سلولهای بنیادی مزانشیمی به سلولهای استخوانی طی 7 و 14 روز توسط آزمونهای آلکالین فسفاتاز و آلیزارین رد مورد بررسی قرار گرفت. افزایش فعالیت آنزیم آلکالین فسفاتاز، حضور مواد معدنی تشکیلشده و گسترده شدن رنگ قرمز-نارنجی بر روی سطح داربستهای حاوی نانوذرات هیدروکسی آپاتیت که نشان از حضور Ca+2 بود، تمایز سلولهای مزانشیمی به سلولهای استخوانی را ثابت کرد. بنابراین نتایج حاصل از این تحقیق، داربست پلی-کاپرولاکتون/ کراتین/ هیدروکسی آپاتیت را بستری مناسب جهت رشد و تمایز سلولهای بنیادی در مهندسی بافت استخوان معرفی میکند.
The human body process can spontaneously repair small bone defects, while large bone defects cannot be repaired without medical interventions. Efforts to eliminate these shortcomings have led to the foundation of bone tissue engineering. In this research, polycaprolactone/keratin scaffold and Polycaprolactone/keratin/hydroxyapatite scaffold were fabricated using electrospinning method and were evaluated. Then, in order to evaluate the cellular differentiation, adipose tissue-derived mesenchymal stem cells were cultured on scaffolds and the process of differentiation of mesenchymal stem cells into bone cells for 7 and 14 days was investigated by alkaline phosphatase and alizarin red test. Increase of the activity of the enzyme alkaline phosphatase, the presence of the minerals and the red-orange-color extended on the scaffolds containing hydroxyapatite nanoparticles that confirmed the presence of Ca + 2 , demonstrated the differentiation of mesenchymal cells into bone cells. Therefore, the results of this study suggest that the polycaprolactone/keratin/hydroxyapatite scaffold is a suitable substrate for proliferation and differentiation of stem cells for bone tissue engineering.
[1] S. Yang, K. F. Leong, Z. Du, & C. K. Chua, “The design of scaffolds for use in tissue engineering Part I. Traditional factors”, Tissue Engineering, Vol. 7, pp. 679-689, 2001.
[2] ن. کوپائی و ا. کارخانه، "بررسی خصوصیات مکانیکی و بیولوژیکی داربست مهندسی بافت بر پایه پلی کاپرولاکتون عامل دار و پلی اتیلن گلایکول دی آکریلات تقویت شده با ذرات هیدروکسی آپاتیت"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 3، صفحه 29-43، 1397.
[3] م. ر. فروغی، س. کرباسی، ر. ا. کهریزسنگی و ع. سعادت، "ارزیابی خواص فیزیکی داربست کامپوزیت نانوکریستال هیدروکسیآپاتیت/ پلیهیدروکسیبوتیرات برای کاربرد در مهندسی بافت استخوان"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 7، شماره 2، صفحه 60-51، 1391.
[4] S. Gorgieva, L. Girandon, & V. Kokol, “Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells”, Materials Science and Engineering: C, Vol. 73, pp. 478-489, 2017.
[5] S. Pérez-Castrillo, M. L. González-Fernández, M. E. López-González & V. Villar-Suárez, “Effect of ascorbic and chondrogenic derived decellularized extracellular matrix from mesenchymal stem cells on their proliferation, viability and differentiation”, Annals of Anatomy-Anatomischer Anzeiger, Vol. 220, pp. 60-69, 2018.
[6] F. Rastegar, D. Shenaq, J. Huang, W. Zhang, B. Q. Zhang, B. C. He, L. Chen, G. W. Zuo, Q. Luo, Q. Shi & E. R. Wagner, “Mesenchymal stem cells: Molecular characteristics and clinical applications”, World Journal of Stem Cells, Vol. 2, pp. 67, 2010.
[7] R. Langer, & D. A. Tirrell, “Designing materials for biology and medicineˮ, Nature, Vol. 428, pp. 487, 2004.
[8] F. Yi, & D. A. La Van, “Poly (glycerol sebacate) nanofiber scaffolds by core/shell electrospinning”, Macromolecular Bioscience, Vol. 8, pp. 803-806, 2008.
[9] Z. Keskin, A. S. Urkmez, & E. E. Hames, “Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering”, Materials Science and Engineering: C, Vol. 75, pp. 1144-1153, 2017.
[10] J. G. Rouse, & M. E. Van Dyke, “A review of keratin-based biomaterials for biomedical applications”, Materials, Vol. 3, pp. 999-1014, 2010.
[11] Z. P. Rad, J. Mokhtari & M. Abbasi, “Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering”, Materials Science and Engineering: C, Vol. 93, pp. 356-366, 2018.
[12] J. Jaroszewicz, J. Idaszek, E. Choinska, K. Szlazak, A. Hyc, A. Osiecka-Iwan, W. Swieszkowski & S. Moskalewski, “Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method”, Materials Science and Engineering: C, Vol. 96, pp. 319-328, 2018.
[13] H. Y. Mi, X. Jing, B. N. Napiwocki, Z. T. Li, L. S. Turng & H. X. Huang, “Fabrication of fibrous silica sponges by self-assembly electrospinning and their application in tissue engineering for three-dimensional tissue regeneration”, Chemical Engineering Journal, Vol. 331, pp. 652-662, 2018.
[14] K. Ghosal, C. Agatemor, Z. Špitálsky, S. Thomas, & E. Kny, “Electrospinning Tissue Engineering and Wound Dressing Scaffolds from Polymer–Titanium Dioxide Nanocomposites”, Chemical Engineering Journal, Vol. 358, pp. 1262-1278, 2018.
[15] H. Lee, H. Hwang, Y. Kim, H. Jeon & G. Kim, “Physical and bioactive properties of multi-layered PCL/silica composite scaffolds for bone tissue regeneration”, Chemical Engineering Journal, Vol. 250, pp. 399-408, 2014.
[16] S. Gorgieva, L. Girandon & V. Kokol, “Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells”, Materials Science and Engineering: C, Vol. 73, pp. 478-489, 2017.
[17] K. Ren, Y. Wang, T. Sun, W. Yue & H. Zhang, “Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes”, Materials Science and Engineering: C, Vol. 78, pp. 324-332, 2017.
[18] P. Wutticharoenmong kol, N. Sanchavanakit, P. Pavasant & P. Supaphol, “Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles”, Macromolecular Bioscience, Vol. 6, pp. 70-77, 2006.
[19] A. Edwards, D. Jarvis, T. Hopkins, S. Pixley & N. Bhattarai, “Poly (ε-caprolactone)/keratin‐based composite nanofibers for biomedical applications”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 103, pp. 21-30, 2015.
[20] م. میرحاج، م. محمودی و ع. شیبانی، "ﺑﺮرﺳﯽ ﺗﺄﺛﯿﺮ ﻧﺎﻧﻮذرات ﻫﯿﺪروﮐﺴﯽ آﭘﺎﺗﯿﺖ ﺑﺮ ﺧﻮاص ﻧﺎﻧﻮاﻟﯿﺎف ﮐﺮاﺗﯿﻦ ﺟﻬﺖ ﮐﺎرﺑﺮد در ﻣﻬﻨﺪﺳﯽ ﺑﺎﻓت"، نشریه مواد پیشرفته در مهندسی، دوره 36، شماره چهارم، صفحه 45-57، 1395.
[21] G. Liao, S. Jiang, X. Xu & Y. Ke, “Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors”, Materials Letters, Vol. 82, pp. 159- 62, 2012.
[22] T. Qiao, S. Jiang, P. Song, X. Song, Q. Liu, L. Wang & X. Chen, “Effect of blending HA-g-PLLA on xanthohumol-loaded PLGA fiber membrane”, Vol. 146, pp. 221-227, 2016.
[23] X. Zhao, Y. S. Lui, C. K. C. Choo, W. T. Sow, C. L. Huang, K. W. Ng, L. P. Tan & J. S. C. Loo, “Calcium phosphate coated keratin–PCL scaffolds for potential bone tissue regeneration”, Materials Science and Engineering: C, Vol. 49, pp. 746-753, 2015.
[24] Y. Esparza, N. Bandara, A. Ullah & J. Wu, “Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins”, Mater Sci Eng C Mater Biol Appl., Vol. 90, pp. 446-453, 2018.
[25] F. M. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari & A. Ardeshirylajimi, “PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation”, Carbohydrate polymers, Vol. 118, pp. 133-142, 2015.
[26] K. Ino, T. Onodera, Y. Kanno, A. Suda, R. Kunikata, T. Matsue & H. Shiku, “Electrochemicolor imaging of endogenous alkaline phosphatase and respiratory activities of mesenchymal stem cell aggregates in early-stage osteodifferentiation”, Electrochimica Acta, Vol. 268, pp. 554-561, 2018
[27] J. Jaroszewicz, J. Idaszek, E. Choinska, K. Szlazak, A. Hyc, A. Osiecka-Iwan, W. Swieszkowski & S. Moskalewski, “Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method”, Materials Science and Engineering: C, Vol. 96, pp. 319-328, 2019.
[28] Z. Liu, Y.Tang, T. Kang, M. Rao, K. Li, Q. Wang, C. Quan, C. Zhang, Q. Jiang & H. Shen, “Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement”, Colloids and Surfaces B: Biointerfaces, Vol. 131, pp. 39-46, 2015.
[29] X. Ma, X. Zhang, Y. Jia, S. Zu, S. Han, D. Xiao, H. Sun & Y. Wang, “Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells”, International orthopaedics, Vol. 37, pp. 1399-1404, 2013.
[30] P. Yilgor, K. Tuzlakoglu, R. L. Reis, N. Hasirci & V. Hasirci, “Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering”, Biomaterials, Vol. 30, pp. 3551-3559, 2009.
[31] M. Mizuno & Y. Kuboki, “Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen”, The Journal of Biochemistry, Vol. 129, pp. 133-138, 2001.
[32] H. R. B. Raghavendran, S. Mohan, K. Genasan, M. R. Murali, S. V. Naveen, S. Talebian, R. McKean, & T. Kamarul, “Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation”, Colloids and Surfaces B: Biointerfaces, Vol. 139, pp. 68-78, 2016.
[33] M. Sattary, M. Rafienia, M. Kazemi, H. Salehi & M. Mahmoudzadeh, “Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering”, Materials Science and Engineering: C, Vol. 97, pp. 141-155, 2019.
[34] G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li & W. Shu, “3D bioactive composite scaffolds for bone tissue engineering”, Bioactive Materials, Vol. 3, pp. 278-314, 2018.
[35] J. Huang, S. M. Best, W. Bonfield, R. A. Brooks, N. Rushton, S. N. Jayasinghe & M. J. Edirisinghe, “In vitro assessment of the biological response to nano-sized hydroxyapatite”, Journal of Materials Science: Materials in Medicine, Vol. 15, pp. 441-445, 2004.
[36] M. Abnosi & L. Dehdehi, “Study of morphology and biochemistry of rat bone marrow mesenchymal stem cells before and after osteogenic differentiation: a comparative study”, J. of Cell and Tissue, Vol. 3, pp. 103-111, 2012.
[37] C. A. Gregory, W. G. Gunn, A. Peister & D. J. Prockop, “An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction”, Analytical biochemistry, Vol. 329, pp. 77-84, 2004.
[38] A. Zaminy, I. Ragerdi Kashani, M. Barbarestani, A. Hedayatpour, R. Mahmoudi & S. Vardasbi, “Melatonin influences the proliferative and differentiative activity of rat adipoe-derived stem cells”, Yakhteh, Vol. 10, pp. 25-32, 2008.
_||_