ساخت و بررسی خواص نانوکامپوزیت طبیعی و زیست سازگار کایتوسن/مگنتیت
محورهای موضوعی : بیوموادفاطمه حیدری 1 , رضا بازرگان لاری 2 , محمدابراهیم بحرالعلوم 3
1 - دانشگاه یاسوج
2 - دانشگاه آزاد اسلامی واحد مرودشت
3 - دانشگاه شیراز
کلید واژه: نانوکامپوزیت, کایتوسن, مگنتیت, زیست سازگاری,
چکیده مقاله :
کایتوسن و مگنتیت هردو ماده ای زیست سازگار و زیست تخریب پذیر هستند. در این مقاله نانوکامپوزیت کایتوسن طبیعی و مگنتیت با روش جدید رسوب دهی در جا ساخته شده است. کایتوسن به کار رفته شده در این نانوکامپوزیت از پوست میگوی صید شده از خلیج فارس، استخراج شده و درصد استیله زدایی آن برابر با 5/73 درصد می باشد. مورفولوژی سطح این نانوکامپوزیت، اندازه نانوذرات مگنتیت رسوب داده شده در زمینه کایتوسن و همچنین تعیین گروه های عامل مواد تشکیل دهنده آن به ترتیب با میکروسکوپ الکترونی روبشی(SEM) ، میکروسکوپ الکترونی عبوری (TEM) و اسپکتروسکوپی مادون قرمز (FTIR) انجام شده است. تشخیص نانوذرات مگنتیت و بررسی اندازه بلور آن با آنالیز تفرق اشعه ایکس (XRD) انجام گردید که نتیجه حاصل 5/23 نانومتر بود. اندازه گیری های مغناطیسی به کمک دستگاه VSMنشان داد که شدت مغناطیس اشباع برابر با emug-104/3 می باشد، همچنین مقدار نیروی کورسیو برابر با Oe39/128 است. نانوکامپوزیت کایتوسن/مگنتیت با مقدارکمترمگنتیت مغناطیس اشباع کمتری دارد. این نتایج نشان دادند که نانوکامپوزیت حاصل پارامغناطیس می باشد. همچنین به منظور بررسی زیست سازگاری، نمونه های تولید شده در حضور سلول های بنیادی کشت داده شدند و نتایج بدست آمده زیست سازگاری نانوکامپوزیت حاصل را تایید کرد.
Both of chitosan (CS) and magnetite are biocompatible and biodegradable materials. In this study, natural CS/magnetite nanocomposite was prepared with in situ precipitation. Surface morphology, magnetite nanoparticles size and investigation of nanocomposite composition was done with scanning electron microscope(SEM), Transmition electron microscope(TEM) and Fourier transform infrared (FTIR). Magnetite nanoparticles and its crystal size investigation were done with X-ray diffraction (XRD) which was 23.5 nm.magnetic properties measurements were done with Vibrating sample magnetometer (VSM) which saturated magnetization was 3.04 emug-1 and cohersive force was 128.39Oe. Chitosan/magnetite nanocomposite with lower contents of magnetite had lower saturated magnetization. This nanocompoaite was superparamagnetic. For investigation of viability, samples cultured in the presence of stem cells and results show that this nanocomposite has biocompatibility.
[1] E. Salahinejad, M. J. Hadianfard, D. D. Macdonald, S. Sharifi, M. Mozafari, K. J. Walker, A. Tahmasbi Rad, S .V. Madihally & D. Vashaee, L. Tayebi, “Surface Modification of Stainless Steel Orthopedic Implants by Sol-Gel ZrTiO4 and ZrTiO4–PMMA Coatings”, J. Biomed. Nanotech, Vol. 9, pp. 1327-1335, 2013.
[2] E. Salahinejad, M. J. Hadianfard, D. D. Macdonald, M. Mozafari, D. Vashaee & L. Tayebi, “A new double-layer sol–gel coating to improve the corrosion resistance of a medical-grade stainless steel in a simulated body fluid”, Mater. Lett, Vol. 97, pp. 162-165, 2013.
[3] Q. Hu, B. Li, M. Wang & J. Shen, “Preparation and characterization of biodegradable chitosan /hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture”, Biomater, Vol. 25, pp. 779-785, 2004.
[4] F. Zhao, Y. Yin, W. Lu, Ch. Leong, W. Zhang, J. Zhang, M. Zhang & K. Yao, “Preparation and histological evaluation of biomimetic three-dimensional ydroxyapatite/ chitosan-gelatin network composite scaffolds”, Biomater, 23, 3227-3234, 2002.
[5] P. J. VandeVord, H. W. T. Matthew, S. P. Desilva, L. Mayton, B .Wu & PH. Wooley, “Evalution of the biocompatibilityof chitosan scaffold”, J. Biomed. Mater. Res., Vol. 59, pp. 585-590, 2002.
[6] J. Y. Lee, S. H. Nam, S. Y. Im, Y. J. Park, Y. M. Lee, Y. J. Seol, C. P. Chung & S. J. Lee, “Enhanced bone formation by contro, lled growth factor delivery from chitosan-based biomaterials”, J. Cont. Rel, Vol. 78, pp. 187-197, 2002.
[7] K. Eugene & Y. L. Lee, “Implantable application of chitin and chitosan”, Biomater, Vol. 24, pp. 2339-49, 2003.
[8] K. Grandfield & I. Zhitomirsky, “Electrophoretic deposition of composite hydroxyapatite–silica–chitosan coatings”, Mater. Character, Vol. 59, pp. 61-67, 2008.
[9] A. Inukai, N. Sakamoto, H. Aono, O. Sakurai, K. Shinozaki, H. Suzuki & N. Wakiy, “Synthesis and hyperthermia property of hydroxyapatite–ferrite hybrid particles by ultrasonic spray pyrolysis”, J. Magnet. Magnet. Mater, Vol. 323, pp. 965-969, 2011.
[10] M. Ghaemy & M. Naseri, “Synthesis of chitosan networks: Swelling, drug release, and magnetically assisted BSA separation using Fe3O4 nanoparticles”, Carbohyd. Polym, Vol. 90, pp. 1265-1272, 2012.
[11] A. MihaiGrumezescu, E. Andronescu, A. Ficai, C. Bleotu, D. Mihaiescu & M. C. Chifiriu, “Synthesis, characterization and in vitro assessment of the magnetic chitosan-carboxy methylcellulose bio composite interactions with the prokaryotic and eukaryotic cells”, Int. J. Pharm, Vol. 436, pp. 771-777, 2012.
[12] B. F. Ajeesh, F. Francis, J. Annie & P. R. H. Varma, “Nano iron oxide–hydroxyapatite composite ceramics with enhanced radiopacity”, J. Mater. Sci. Mater. Med., Vol. 2, pp. 1427–1434, 2010.
[13] O. Kuda, N. Pinchuk, L. Ivanchenko, O. Parkhomey, O. Sych, M. Leonowicz, R. Wroblewski & E. Sowka, “Effect of Fe3O4, Fe and Cu doping on magnetic properties and behaviour in physiological solution of biological hydroxyapatite/glass composites”, J. Mater. Process. Technol, Vol. 209, pp. 1960–1964, 2009.
[14] Q. Hu, F. Chen, B. Li & J. Shen, “Preparation of three-dimensional nano-magnetite/chitosan rod”, Materials Letters, Vol. 60, pp. 368-370, 2006.
[15] R. Bazargan-Lari, M. E. Bahrololoom & A. Nemati, “Sorption behavior of Zn (II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial waste water”, J. Food Agric. Environ, Vol. 9, pp. 892-897, 2011.
[16] Sh. Sabnis & H. Block, “Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan”, Polymer Bulletin, Vol. 39, pp. 67-71, 1997.
[17] D. Gopi, A. M. Thameem Ansari, E. Shinyjoy & L. Kavith, “Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation”, Spectrochimica Acta Part A, Vol. 87, pp. 245– 250, 2012.