پاسخ محتوای یونی و فعالیت آنتی اکسیدانی جو به روشهای کاربرد اسیدسالیسیلیک در شرایط شور
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیسیده الهه هاشمی 1 , یحیی امام 2 , هادی پیرسته انوشه 3
1 - دانش آموخته کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران
2 - ستاد دانشکده کشاورزی، دانشگاه شیراز، شیراز
3 - استادیار مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران
کلید واژه: عملکرد, کاتالاز, پتاسیم, سدیم, سوپراکسیددیسموتاز,
چکیده مقاله :
اگرچه بهخوبی مشخص شده است که اسیدسالیسیلیک میتواند موجب افزایش تحمل شوری در جو گردد، اما هنوز اتفاق نظر کلی در مورد بهترین روش و مرحله اعمال آن وجود ندارد. بدین منظور یک آزمایش فاکتوریل در قالب طرح کاملا تصادفی در شرایط کنترل شده در دانشکده کشاورزی دانشگاه شیراز در سال 1393 انجام شد. در این پژوهش تاثیر کاربرد اسیدسالیسیلیک در پنج سطح شاهد، پیشتیمار بذر، محلولپاشی در مراحل استقرار کامل، برجستگی دوگانه و گلدهی بر عملکرد دانه، غلظت سدیم و پتاسیم شاخساره و ریشه و همچنین فعالیت آنزیمهای آنتیاکسیدان جو رقم ریحان تحت سه سطح تنش شوری شاهد، 6 و 12 دسیزیمنس برمتر بررسی شد. نتایج نشان داد که تنش شوری، بسته به شدت
Although it has been well-known that salicylic acid (SA) can increase salinity tolerance in barley; there is no consensus on the best method and time of application. Thus, a factorial experiment based on completely randomized design under controlled conditions was conducted at College of Agriculture, Shiraz University in 2014. In this research, the effect of SA at five levels: control (No SA), seed priming, foliar application at complete establishment, double ridges and anthesis was examined on grain yield, sodium (Na+ ) and potassium (K+ ) concentration in shoot and root as well as antioxidant enzymes activities of barley cv. Reyhane under three salt stress levels: control, 6 and 12 dS m-1. The results showed that salt stress, depended to its severity reduced Na+ and increased K+ in shoot and root and enhanced antioxidant enzymes including peroxidase, catalase, ascorbic peroxidase and superoxide dismutase, so that the most severe salt stress caused 147.4% increase in Na+ and 44.1% reduction in K+ . Nevertheless, SA in priming and foliar application could compensate some of these changes and so increased grain yield. For example, seed priming and foliar application at complete establishment, double ridges and anthesis increased K+ by 72.7%, 77.3%, 22.7% and 18.2% and decreased Na+ by 37.8%, 40.5%, 27.0% and 13.5%, respectively. Overall, it can be concluded that the highest positive effect f SA was observed in seed priming and foliar application at establishment, which showed that SA might induce more salt stress tolerance if applied at early growth stages.
امام، ی. 1390 .زراعت غلات (جلد چهارم). انتشارات دانشگاه شیراز. 190 صفحه.
امام، ی.، ا. حسینی، ن. رفیعی و ه. پیرسته انوشه. 1392 .رشد اولیه و جذب یونهای سدیم و پتاسیم در ده رقم جو در شرایط تنش شوری. مجله فیزیولوژی گیاهان زراعی. جلد 19 :15-5
پاکار، ن.، ه. پیرسته انوشه و ی. امام. 1393 .اثر غلظت های متفاوت سالسیلیک اسید بر ویژگی های کمی و کیفی جو در شرایط تنش شوری. مجله تولید و فرآوری محصولات زراعی و باغی. جلد 14 :201-191.
دولت آبادیان، ا.، ع.م. مدرس ثانوی و ف. اعتمادی. 1387 .اثر پیش تیمار اسید سالیسیلیک بر جوانه زنی بذر گندم (aestivum Triticum L.) در شرایط تنش شوری. مجله زیست شناسی ایران، جلد 21 :702-692
رنجبر، غ.ح. و ه. پیرسته انوشه. 1394 .نگاهی به تحقیقات شوری در ایران؛ با تاکید بر بهبود تولید گیاهان زراعی. مجله علوم زراعی ایران. جلد 17، مشاره 2، 178-165.
Akhila, S.N., T.K. Abraham and D.S. Jaya. 2008. Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea Vigna unguiculata L. varieties. J. Environ. Biol. 29: 689-691.
Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol. 55: 373-399.
Ashraf, M., N.A. Akram, R.N. Arteca and M.R. Foolad. 2010. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev.Plant Sci. 29:162–190.
Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay predictable to acrylamide gels. Analyt. Biochem. 44: 276–287.
Blokhina, I., E.Virolainen and K.V. Fagestedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91:179-194.
Blumwald, E., G.S. Aharon and M.P. Apse. 2000. Sodium transport in plant cells. Bioch. Biophys. ActaBiomem. 1465: 140-151.
Chance, B. and A.C. Maehly. 1995. Assay of catalase and peroxidase. Methods Enzymol. 2: 764 – 775.
El-Tayeb, M.A. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 45: 215-225.
Eraslan, F., A. Inal, A. Gunes and M. Alpaslan. 2007. Impact of exogenous salicylic acid on growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Horticul. 113: 120–128.
Garg, N. and G. Manchanda. 2009. ROS Generation in plants. Plant Biol. 143: 88-96.
Gunes, A., A. Inal, M. Alpaslan, N. Cicek, E. Guneri, F. Eraslan and T. Guzelordu. 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agron Soil Sci. 51: 687–695.
Hayat, Q., S. Hayat, M. Irfan and A. Ahmad. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 68: 14–25
He, Y. and Z.J. Zhu. 2008. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biol. Plant. 52: 792–795.
Kaydan, D., M. Yagmur and N. Okut. 2006. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi. 13: 114-119.
Khodary, S.E.A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Inter. J. Agric. Biol. 6: 5-8.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880.
Pirasteh-Anosheh, H., Y. Emam, M. Ashraf, and M.R. Foolad. 2012. Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Stud. Biol. 11: 501-520.
Pirasteh-Anosheh, H., G. Ranjbar, Y. Emam and M. Ashraf, M. 2014. Salicylic acid-induced recovery ability in salt-stressed Hordeum vulgare plants. Turk. J. Bot. 37: 112-121.
Renu, K.C. and S. Devarshi. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than susceptible wheat cultivar under field conditions. Environ. Exp. Bot. 60: 276- 283.
Saedmoucheshi, A., H. Pakniyat, H. Pirasteh-Anosheh and Azooz M. 2013. Role of ROS as signaling molecules in plants. Pp. 585-620, In: P. Ahmad (ed.), Oxidative Damage to Plants; Antioxidant Networks and Signaling. Elsevier Inc, San Diego
Sairam, R.K. and G.C. Srivastava. 2001. Water stress tolerance of wheat Triticum aestivum L.: Variation in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotype. J. Agron. Crop Sci. 186: 63-70.
_||_