Coincident and common fixed point theorems using comparison and admissible function in w-distance metric space
محورهای موضوعی : Fixed point theory
1 - Department of Mathematics, K.R.M.D.A.V. College, Nakodar, District Jalandhar (Affilated to Guru Nanak Dev University, Amritsar), Punjab, 144040, India
2 - Department of Mathematics, Om Sterling Global University, NH-52, Hisar-Chandigarh Road, Hisar, Haryana, 125001, India
کلید واژه: w-distance map, coincident point, common fixed point, generalized $(eta, chi, p)$ contractive mapping,
چکیده مقاله :
In this manuscript, the concept of generalized $(\eta, \chi, p)$ contractive mapping for two maps in the framework of w-distance is introduced and some fixed point results are established, which extend recent results of Lakzian and Rhoades [5] and many existing results in the literature. In addition, to validate the novelty of our findings, we give an illustrative example, which yields the main result. Moreover, as an application, we employ the achieved result to earn the existence criteria of the solution of a type of non-linear Fredholm integral equation.
[1] S. Barootkoob, E. Karapinar, H. Lakzian, A. Chanda, Extenstions of Meir-Keeler contraction via w-distances with application, Kragujev. J. Math. 46 (4) (2022), 533-547.
[2] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon 44 (1996), 381-391.
[3] E. Karapinar, B. Samet, Generalized α-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. (2012), 2020:793486.
[4] H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, Journal of Fixed Point Theory Appl. 18 (2) (2015), 1-14.
[5] H. Lakzian, B. E. Rhoades, Some fixed point theorems using weaker MeirKeeler function in metric spaces with wdistance, Appl. Math. Comput. 342 (2019), 18-25.
[6] B. E. Rhoades, A comparison of various definitions of contractive mappings, Transactions of the mathematical society, 226 (1977), 257-290.
[7] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for α − ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
[8] P. Shahi, J. Kaur, S. S. Bhatia, Fixed point theorems for (ξ,α)-expansive mappings in complete metric spaces, Fixed Point Theory Appl. 157 (2012), 1-15.