Plant Species Diversity and Phytomass along an Altitudinal Gradient of Himalayan Rangeland of Eastern Nepal
محورهای موضوعی : Soil Science
1 - Biology, Central Campus of Technology, Dharan, Tribhuvan University
کلید واژه: Elevation, Physicochemical, Ordination, interrelationship, hump-shaped,
چکیده مقاله :
The most important environmental driver is the elevation in mountain ecosystems. It strongly influences the distribution of species richness. Species richness is an indicator of the biological diversity and ecological condition of the area. To understand the status of phytomass, species diversity, and physico-chemical properties of soil along the altitudinal gradient and its influence on the interrelation between phytomass, species diversity, and physicochemical properties of soil. To know the correlation between plant species and environmental factors.We used a transect line method to enumerate the plant community in each sampling plot. Phytomass was estimated by the total harvesting method. Soil properties were determined with standard methods, viz., Blake and Hartge (1986), Chromic Acid Wet Oxidation Method, and Kjeldahl method. SPSS and R programming were used for data analysis.Plant diversity indices, viz., Shannon-Wiener diversity index, Simpson's dominant index, Pielou’s index, and Margalef index were highest at the low altitude and the lowest value at high altitude. AGB, BGB, SOC and STN were highest in high altitude (Jaljale). Phytosociological indices and environmental factors, except moisture and SBD, were high at high elevation. The first axis of ordination was positively correlated with SBD, moisture, ABG, and BGB and negatively with STN.The low-altitude rangelands have high anthropogenic activities; grazing, trampling, and burning disturbed the natural storage of organic carbon, nitrogen, phytomass, and diversity. The study showed a linear negative relationship between phytomass and altitude.
Aarssen, L.W., 2001. On correlations and causations between productivity and species richness in vegetation: predictions from habitat attributes. Basic and Applied Ecology, 2: 105-114.https://doi.org/10.1078/1439-1791-00041.
Appelgren, K. Mattila, J., 2005. Variation in vegetation communities in shallow bays of the northern Baltic Sea. Aquatic botany, 83:1-13.
Austin, M.P., Pausas, J.G., Nicholls, A.O., 1996. Patterns of species richness in relation to environment in southern New South Wales, Australia.Australian Journal of Ecology, 21: 154-164.https://doi.org/10.1111/j.1442-9993.1996.tb00596.x.
Bai, Y., Wu, J., Pan, Q., Huang, J., Wang, Q., Li, F., Buyantuyev, A., Han, X., 2007. Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology,44: 1023-1034.https://doi.org/10.1111/j.1365-2664.2007.01351.x.
Bhattarai, K.R., Vetaas, O.R., Grytnes, J.A., 2004. Relationship between plant species richness and biomass in an arid sub-alpine grassland of the central Himalayas, Nepal. Folia Geobotanica,39:57-71.https://doi.org/10.1007/BF02803264.
Brown, J.H., Gibson, A.C., 1983. Biogeography. Mosby, St. Louis, Mo, USA.
Currie, D.J., 1991. Energy and large-scale patterns of animal and plantspecies richness. American Naturalist, 137: 27–49.doi/pdf/10.1086/285144.
Debnath, P., Deb, P., Sen, D., Pattannaik, S., Sah, D., Ghosh, S., 2012. Physico-chemical properties and its relationship with water holding capacity of cultivated soils along altitudinal gradient in Sikkim. International Journal of Agriculture, Environment and Biotechnology, 5:99-102.
Facelli, J.M., Springbett, H., 2009. Why do some species in arid lands increase under grazing? Mechanisms that favour increased abundance of Maireana pyramidata in overgrazed chenopod shrublands of SouthAustralia.Austral Ecology 34, 588- 597.https://doi.org/10.1111/j.1442-9993.2009.01970.x
Garhwal, R., Qureshi, F., Giri, J., 2013. Characteristics and classification of the soils of Sirohi district of Rajasthan. Agropedology, 23: 8-15.
Gentry, A.H., 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri botanical garden, 1-34.https://doi.org/10.2307/2399464.
Gillman, L.N., Wright, S.D., 2006. The influence of productivity on the species richness of plants: a critical assessment. Ecology, 87: 1234-1243.https://doi.org/10.1890/0012-9658(2006)87[1234:TIOPOT]2.0.CO;2.
Grace, J.B., Michael, A.T., Smith, M.D., Seabloom, E., Andelman, S.J., Meche, G., Weiher, E., Allain, L.K., Jutila, H., Sankaran, M., 2007. Does species diversity limit productivity in natural grassland communities? Ecology Letters, 10:680-689.https://doi.org/10.1111/j.1461-0248.2007.01058.x.
Grime, J., 2002. Declining plant diversity: empty niches or functional shifts? Journal of Vegetation Science, 13: 457-460. https://www.jstor.org/stable/3236730
Grime, J.P., 2006. Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons.
Grytnes, J.A., Vetaas, O.R., 2002. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist, 159: 294-304.doi/abs/10.1086/338542.
Guo, Q., 2007. The diversity–biomass–productivity relationships in grassland management and restoration. Basic and Applied Ecology, 8: 199-208.https://doi.org/10.1016/j.baae.2006.02.005.
Hay, M., Kicklighter, C., 2001. Grazing, effects of encyclopedia of biodiversity. Academic Press, SanDiego, 3: 265–276.
Heaney, R.L., 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography, 10: 15-39.https://doi.org/10.1046/j.1466-822x.2001.00227.x
Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M., Diemer, M., Dimitrakopoulos, P., Finn, J., Freitas, H., Giller, P., Good, J., 1999. Plant diversity andproductivity experiments in European grasslands. science, 286: 1123-1127. DOI: 10.1126/science.286.5442.1123.
Hegazy, A., Lovett-Doust, J., Hammouda, O., Gomaa, N., 2007. Vegetation distribution along the altitudinal gradient in the northwestern Red Sea region. Community Ecology, 8: 151-162.https://doi.org/10.1556/comec.8.2007.2.2.
Huston, M.A,, DeAngelis, D.L., 1994. Competition and coexistence: the effects of resource transport and supply rates. The American Naturalist, 144: 954-977. doi/abs/10.1086/285720.
IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.
Johnston, A., 1986. Soil organic matter, effects on soils and crops. Soil use and management,2: 97.https://doi.org/10.1111/j.1475-2743.1986.tb00690.x.
Koirala, M., 2002. Environmental determinants of the livelihood related food production system in a Mid-Himalayan landscape (Tinjure-Milke region), East Nepal. (Ph. D.), Jawaharlal Nehru University, New Delhi, India.http://hdl.handle.net/10603/18675, PhD thesis
Kumar, M., Kumar, S., Sheikh, M.A., 2010. Effect of altitudes on soil and vegetation characteristics of Pinus roxburghii forest in Garhwal Himalaya. Journal of Advanced Laboratory Research in Biology, 1: 130-133.
Lieberman, D., Lieberman, M., Peralta, R., Hartshorn, G.S., 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology, 84: 137-152.https://doi.org/10.2307/2261350.
Liu, S., Cheng, F., Dong, S., Zhao, H.X., Wu, X., 2017. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI. Scientific reports, 7: 4182.DOI:10.1038/s41598-017-04038-4.
Lomolino, M.V., 2001. Elevation gradients of species‐density: historical and prospective views. Global Ecology and biogeography,10: 3-13.doi:https://doi.org/10.1046/j.1466-822x.2001.00229.x.
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J., Hector, A., Hooper, D., Huston, M., Raffaelli, D., Schmid, B., 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. science, 294: 804-808. DOI: 10.1126/science.1064088.
Maharjan, M., 2010. Soil carbon and nutrient status of rangeland in Upper Mustang. Institute of Forestry, Tibhuvan University, Pokhara, Nepal. (M.Sc. Thesis)
Malik, H.Z.,Malik, N.Z., 2012. High altitude forest composition diversity and its component in a part of Ganga chotti and Bedori Hills District bagh. Azad Jammu and Kashmir, Pakistan. AGD Landscape and Environment, 6: 31-40.
Margalef, R., 1958. Temporal succession and spatial heterogeneity in phytoplankton. pp. 323-347. In: Perspectives in Marine biology, Buzzati-Traverso (ed.). University of California Press, Berkeley
McCain, C., Grytnes, J., 2010. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ELS) John Wiley & Sons; Chichester, UK.https://doi.org/10.1002/9780470015902.a0022548.
McCain, C.M., 2007. Could temperature and water availabelity drive elevation speciesrichness?Aglobal case study for bats. Global Ecology andBiogeography, 18: 1-13.https://doi.org/10.1111/j.1466-8238.2006.00263.x.
Metcalfe, D.B., Asner, G.P., Martin, R.E., Silva Espejo, J.E., Huasco, W.H., Farfán Amézquita, F.F., CarranzaJimenez. L., Galiano Cabrera, D.F., Baca, L.D., Sinca, F., 2014. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology letters, 17: 324-332.https://doi.org/10.1111/ele.12233.
Milchunas, D., Sala, O., Lauenroth, W.K., 1988. A generalized model of the effects of grazing by large herbivores on grassland community structure. The American Naturalist, 132: 87-106. doi/pdf/10.1086/284839.
Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., Willig, M.R., Dodson, S.I., Gough, L., 2001. What is the observed relationship between species richness and productivity? Ecology, 82: 2381-2396.https://doi.org/10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2.
Naeem, S., Håkansson, K., Lawton, J.H., Crawley, M., Thompson, L.J., 1996. Biodiversity and plant productivity in a model assemblage of plant species. Oikos,76:259-264.https://doi.org/10.2307/3546198.
Namgail, T., Rawat, G.S., Mishra, C., van Wieren, S.E., Prins, H.H., 2012. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas. Journal of plant research, 125: 93-101.https://doi.org/10.1007/s10265-011-0430-1.,
Neri, A.V., Borges, G.R.A., Meira-Neto, J.A.A., Magnago, L.F.S., Trotter, I.M., Schaefer, C.E.G., Porembski, S., 2016. Soil and altitude drive diversity and functioning of Brazilian Páramos (campo de altitude). Journal of Plant Ecology, 10: 771-779.https://doi.org/10.1093/jpe/rtw088.
Odland, A., Birks, H., 1999. The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography,22: 548-566.https://doi.org/10.1111/j.1600-0587.1999.tb01285.x.
Olff, H., Ritchie, M.E., Prins, H.H., 2002. Global environmental controls of diversity in large herbivores. Nature, 415: 901.https://doi.org/10.1038/415901a.
Palmer, M.W., 1992. The coexistence of species in fractal landscapes. The American Naturalist,139: 375-397.https://doi.org/10.1086/285332.
Pansu, M., Gautheyrou, J., 2006. Handbook of soil analysis-Mineralogical, organic and inorganic methods Springer. Berlin, Heidelberg, New-York.
Pärtel, M., Zobel, M., 2007. Dispersal limitation may result in the unimodal productivitydiversity relationship: a new explanation for a general pattern. Journal of Ecology, 95: 90-94.https://doi.org/10.1111/j.1365-2745.2006.01185.x.
Patterson, B.D., Stotz, D.F., Solari, S., Fitzpatrick, J.W., Pacheco, V., 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography, 25: 593-607.https://doi.org/10.1046/j.1365-2699.1998.2530593.x.
Paudel, P.K., Sipos, J., Brodie, J.F., 2018. Threatened species richness along a Hilayan elevation gradient: quantifying the influences of human population density, range size,and geometric constraints. BMC Ecology, 18:1-8.https://doi.org/10.1186/s12898-018-0162-3.
Pausas, J.G., Austin, M.P., 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science, 12: 153-166.https://doi.org/10.2307/3236601.
Peet, R., 1974. The measurement of species diversity. annual review of ecology and systematics, Section of Ecology and Systematics,5: 285--307. https://www.jstor.org/stable/2096890.
Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87: 2614–2625.
Pielou, E. C., 1969: An Introduction to Mathematical Ecology. Wiley, New York
Pokharel, A., Chhetri, M.,Upadhyaya, C.P., 2007. Effect of grazing on plantspecies diversity and aboveground biomass in a Trans-Himalayan Rangeland. Banko Jankari, 17: 25:31. https://doi.org/10.3126/banko.v17i1.656.
Ram, J., Singh, J.S., Singh, S.P., 1989. Plant biomass, species diversity and net primary production in a central Himalayan high altitude grassland. Journal of Ecology, 77: 456-468.https://doi.org/10.2307/2260762.
Rastetter, E.B., Kwiatkowski, B.L., Le Dizès, S., Hobbie, J.E., 2004. The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change. Biogeochemistry, 69: 37-62.https://doi.org/10.1023/B:BIOG.0000031035.52498.21.
Rawal, R.S., Pangety, Y.P.S., 1994. High altitude forest vegetation with special reference to timberline in Kumaun central Himalaya. In Pangtey, YPS, Rawal R S (eds.) High Altitudes of the Himalaya. Nainital, India. Gyanodaya Prakashan.353-399.
Saeed, S., Barozai, M.Y.K., Ahmad, A., Shah, S.H., 2014. Impact of altitude on soil physical and chemical properties in Sra Ghurgai (Takatu mountain range) Quetta, Balochistan. International Journal of Scientific & Engineering Research, 5: 730-735.
Safford, H.D., 1999. Brazilian Páramos I. An introduction to the physical environment and vegetation of the campos de altitude. Journal of Biogeography, 26:693-712.https://doi.org/10.1046/j.1365-2699.1999.00313.x.
Schwartz, M., Brigham, C., Hoeksema, J., Lyons, K., Mills, M, Van Mantgem, P., 2000. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia,122: 297-305.https://doi.org/10.1007/s004420050035.
Semenova, G.V., Maarel, E., 2000. Plant functional types–a strategic perspective. Journal of Vegetation Science, 11: 917-922.https://doi.org/10.2307/3236562.
Shannon, C. E., Wiener, W., 1949. The Mathematical Theory of Communication. Urbana, University of Illinois Press.
Sharma., C., Gairola, S., Ghildiyal, S., Suyal, S., 2010. Physical properties of soils in relation 1to forest composition in moist temperate valley slopes of the Central Western Himalaya. Journal of forest and environmental science, 26: 117-129.DOI: 10.1051/forest:2002020.
Shrestha, K., 2016. Variation in soil organic carbon within highland grasslands of Langtang nationalpark, Nepal. International journal of environment, 5: 57-65.DOI: https://doi.org/10.3126/ije.v5i3.15704.
Shuaifeng, L., Jianrong, S., Xuedong, L., Wande, L., Guanglong, O., 2018. Positive relationship between species richness and aboveground biomass across forest strata in a primary Pinus kesiya forest. Scientific Reports,8:1-9.https://doi.org/10.1038/s41598-018-20165-y.
Sigdel, S.R., Rupakheti, D., Baral, U., Tripathee, L., Aryal, R., Dhital, S., Sharma, P., 2015. Physico-chemical characteristics of soil along an altitudinal gradients at southern aspect of Shivapuri Nagarjun National Park, Central Nepal. International Research Journal of Earth Sciences, 3: 1-6.
Simpson, E. H., 1949. Measurement of diversity. Nature, 163: 688.
Stegen, J.C., Swenson, N.G., Enquist, B.J., White, E.P., Phillips, O.L., Jørgensen, P.M., WMD, Monteagudo Mendoza A, Núñez Vargas P. 2011. Variation in aboveground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20: 744-754.https://doi.org/10.1111/j.1466-8238.2010.00645.x.
Stevens, G.C., 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. The American Naturalist, 140: 893-911.https://doi.org/10.1086/285447.
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37: 29-38.
Wallace, A.R., 1878. Tropical nature, and other essays. Macmillan,London.
Xu, B., Bo, L., Bo, N., Yao, F., Qi, F., Xinshi, Z., 2018. Characteristics of soil organic carbon and total nitrogen under various grassland types along a transect in a mountain-basin system in Xinjiang, China. Journal of Arid Land, 10: 612-627.https://doi.org/10.1007/s40333-018-0006-1.
Yang, Y., Fang, J., Pan, Y., Ji, C., 2009. Aboveground biomass in Tibetan grasslands. Journal of Arid Environments, 73: 91-95.https://doi.org/10.1016/j.jaridenv.2008.09.027.
Yonzon, P., Heinen, J., 1997. Nepal’s biodiversity and protected areas: the 1997 protected areas management workshop of the National Biodiversity Action Plan. Unpublished Report. UNDP and Department of National Parks and Wildlife Conservation, Kathmandu.
Zimmerman, J.C., DeWald, L.E., Rowlands, P.G., 1999. Vegetation diversity in an interconnected ephemeral riparian system of north-central Arizona, USA. Biological Conservation, 90: 217-228.https://doi.org/10.1016/S0006-3207(99)00035-X.
Zhou, H., Tang, Y., Zhao, X., Zhou, L., 2006. Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai-Tibet Plateau. Pak J Bot., 38:1055–1069.