اسپیرولینا: خورشید سبز سلامت با ویژگی های زیست فعال
محورهای موضوعی : زیست فناوری میکروبیبهار نوروزی 1 , مهناز جعفری 2 , شقایق بابایی 3 , آتنا معتمدی 4 , امر علی انوار 5
1 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran, Mailbox: 775/14515, Postcode: 1477893855, ORCID: 0000-0002-9015-2512
2 - گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
3 - 1گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
4 - 1گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
5 - گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
کلید واژه: اسپیرولینا, ترکیبات ضد میکروبی, منبع غذایی کامل, ویژگی های زیست فعال, سیانوباکترها,
چکیده مقاله :
اسپیرولینا، سیانوفیت فتوسنتز کننده ای است که قادر به رشد در شدت بالای نور خورشید و شرایط بسیار قلیایی و دمای بالا است. این جلبک دارای مکملهای ویتامینی در رژیم غذایی است. اسپیرولینا، در آینده ای نزدیک به عنوان منبع غذایی کامل معرفی خواهد شد. در واقع یکی از مهمترین مشکلاتی که در صنعت غذا وجود دارد، استفاده از نگهدارندههای سنتزی و افزودنیهای سنتزی غذایی میباشد که خطر ابتلا به سرطان را افزایش میدهد. بنابر این امروزه در سراسر جهان کوشش میشود تا آنتی اکسیدانهای جدید و ایمن را از منابع طبیعی جداسازی کنند. در این میان فرآوردههای طبیعی (متابولیتهای ثانویه) سیانوباکترها، منبع مهمی از ترکیبهای جدید دارویی هستند. فرآوردههای طبیعی نه تنها خود دارای ارزش دارویی هستند، بلکه به عنوان مدلهای ساختمانی برای ایجاد آنالوگهای سنتزی نیز به کار میروند. ترکیب شیمیایی اسپیرولینا شامل پروتین (70-55 درصد)، کربوهیدرات (25-15 درصد)، اسیدهای چرب ضروری (18 درصد) ویتامینها، مواد معدنی و رنگدانههایی مانند کاروتن، کلروفیل a و فیکوسیانین است. از آنجا که پتانسیل زیادی برای بهره برداری از این جلبک و تبدیل آن به یک مکمل غذایی در تولید انواع محصولات خوراکی مانند کلوچه و بیسکوئیت، بستنی و پنیر خامهای وجود دارد، میتواند به عنوان شاه کلیدی طلائی در تغذیه مورد استفاده قرار گیرد. در این مقاله سعی شده است تا با توجه به پتانسیل بالقوه سیانوباکتر اسپیرولینا، به بررسی ساختار، چرخه زندگی، ترکیبات تغذیهای، فعالیت ضد ویروسی، اثرات ضد سرطانی، ضد التهابی، ایمنی، خواص ضد نفروتوکسیسیتی، افزایش قدرت بینایی، کاهش وزن و چربی خون پرداخته شود. بدیهی است که خواص ارزشمند اسپیرولینا میتواند جانشینی مناسب برای بسیاری از ترکیبات ضد میکروبی و آنتی اکسیدان های سنتزی باشد که نه تنها هیچ خطری برای مصرف کننده ندارد، بلکه میتواند سلامت مصرف کنندگان را نیز بهبود بخشد. از طرف دیگر، از آنجایی که در مقاله حاضر، آخرین دست آوردهای انجام شده بر سیانوباکتر اسپیرولینا مرور شده است، امید است این تحقیق بتواند زمینه ساز معرفی ریزجلبکهای خوراکی با ویژگیهای شفابخشی با قابلیت استفاده در صنایع غذایی تلقی گردد.
Spirulina is a photosynthetic cyanophyte that can grow in high intensity sunlight and very alkaline conditions and high temperatures. This algae contains vitamin supplements in the diet. Spirulina will be introduced as a complete food source in the near future. In fact, one of the most important problems in the food industry is the use of synthetic preservatives and synthetic food additives that increase the risk of cancer. Therefore, efforts are being made around the world today to isolate new and safe antioxidants from natural sources. Among these, the natural products (secondary metabolites) of cyanobacteria are an important source of new drug compounds. Natural products not only have medicinal value themselves, but are also used as building models to create synthetic analogues. The chemical composition of Spirulina includes protein (70-55%), carbohydrates (25-25%), essential fatty acids (18%), vitamins, minerals and pigments such as carotene, chlorophyll a and phycocyanin. Because there is great potential for exploiting this algae and turning it into a dietary supplement in the production of a variety of food products such as cookies and biscuits, ice cream and cream cheese, and that in a small volume of this algae, it can be used as a golden key in nutrition. In this article, considering the potential potential of Cyanobacterium Spirulina, the morphological structure, life cycle, nutritional composition, antiviral activity, anti-cancer, anti-inflammatory, safety, anti-nephrotoxicity properties, increased visual acuity, weight loss and Blood lipids are treated. Obviously, the introduction of valuable properties of cyanobacteria Spirulina can be a suitable substitute for many antimicrobial compounds and synthetic antioxidants that not only pose no risk to the consumer, but can also improve consumer health. On the other hand, since the present study reviews the latest findings on cyanobacteria Spirulina, it is hoped that this study could pave the way for the introduction of edible microalgae with healing properties that can be used in the food industry.
K. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain
FSN. Journal of natural products. 2014, 77(8):1784-90.
2. Nowruzi B, Haghighat S, Fahimi H, Mohammadi E. Nostoc cyanobacteria species: a new and
rich source of novel bioactive compounds with pharmaceutical potential. Journal of
Pharmaceutical Health Services Research. 2018, 9(1):5-12.
3. Nowruzi B, Sarvari G, Blanco S. Applications of cyanobacteria in biomedicine. InHandb. Algal
Sci. Microbiol. Technol. Med 2020. Elsevier Amsterdam: 441-453.
4. Nowruzi B, Sarvari G, Blanco S. The cosmetic application of cyanobacterial secondary
metabolites. Algal Research. 2020, 49:101959.
5. Nowruzi B, Wahlsten M, Jokela J. A report on finding a new peptide aldehyde from
cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey’s analysis. Iranian journal of
biotechnology. 2019, 17(2): 18-29.
6. Nowruzi B, Blanco S. In silico identification and evolutionary analysis of candidate genes
involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran.
Phytochemistry Letters. 2019, 29:199-211.
7. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a Nostoc sp. Algae. 2012, 27(4):303-405.
8. Rajabpour N, Nowruzi B, Ghobeh M. Investigation of the toxicity, antioxidant and
antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta
Biologica Slovenica. 2019, 62:2-15.
9. Safavi M, Nowruzi B, Estalaki S, Shokri M. Biological Activity of Methanol Extract from
Nostoc sp. N42 and Fischerella sp. S29 Isolated from Aquatic and Terrestrial Ecosystems.
International Journal on Algae. 2019, 21(4): 31-45.
10. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Optimization
of cultivation conditions to maximize extracellular investments of two Nostoc strains.
Algological Studies. 2013, 142(1):63-76.
11. Maujean E, Desobry S, Gillet G, Poupard N, Desjardins‐Lavisse I, Desobry‐Banon S.
Influence of pressurised cryogenic nitrogen technology on Arthrospira platensis (spirulina)
preservation during storage. International Journal of Food Science & Technology. 2021, 56
(5):2443-51.
12. Wu H, Gao K, Villafañe VE, Watanabe T, Helbling EW. Effects of solar UV radiation on
morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Applied
and environmental microbiology. 2005, 71(9):5004-13.
13. Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA. Spirulina in clinical
practice: evidence-based human applications. Evidence-based complementary and alternative
medicine. 2011: 1-4.
14. Rajasekar P, Palanisamy S, Anjali R, Vinosha M, Elakkiya M, Marudhupandi T, Tabarsa M,
You S, Prabhu NM. Isolation and structural characterization of sulfated polysaccharide from
Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and
Zebrafish growth and reproductive performance. International journal of biological
macromolecules. 2019, 141: 809-21.
15. Zarezadeh M, Faghfouri AH, Radkhah N, Foroumandi E, Khorshidi M, Rasouli A, Zarei M,
Mohammadzadeh Honarvar N, Hazhir Karzar N, Ebrahimi Mamaghani M. Spirulina
supplementation and anthropometric indices: A systematic review and meta‐analysis of
controlled clinical trials. Phytotherapy Research. 2021, 35(2):577-86.
16. Capelli B, Cysewski GR. Potential health benefits of spirulina microalgae. Nutrafoods. 2010,
9(2):19-26.
17. Siva Kiran RR, Madhu GM, Satyanarayana SV. Spirulina in combating protein energy
malnutrition (PEM) and protein energy wasting (PEW)-A review. Journal of Nutrition
Research. 2015, 3(1):62-79.
18. Kumar D, Dhar DW, Pabbi S, Kumar N, Walia S. Extraction and purification of
C-phycocyanin from Spirulina platensis (CCC540). Indian Journal of Plant Physiology. 2014,
19(2):184-8.
19. Tessier R, Calvez J, Khodorova N, Gaudichon C. Protein and amino acid digestibility of 15 N
Spirulina in rats. European Journal of Nutrition. 2020, 1:1-7.
20. Ali SK, Saleh AM. Spirulina-an overview. International journal of Pharmacy and
Pharmaceutical sciences. 2012, 4(3):9-15.
21. Banakar V, Alam Q, Rajendra SV, Pandit A, Cladious A, Gnanaprakash K. Spirulina, The
Boon of Nature. International Journal of Research in Pharmaceutical Sciences. 2020, 11(1):57
-62.
22. Anantharajappa K, Dharmesh SM, Ravi S. Gastro-protective potentials of Spirulina: role of
vitamin B 12. Journal of Food Science and Technology. 2020, 57(2):745-53.
23. Nowruzi B, Jouni J. Identification of Four Different Chlorophyll Allomers of Nostoc Sp. by
Liquid Chromatography- Mass Spectrometer (LC-MS) Int J Plant Stu. 2019, 2(1): 1-4.
24. Rosario JC, Josephine RM. Mineral profile of edible algae Spirulina platensis. Int J Curr
Microbiol App Sci. 2015, 4(1):478-83.
25. Shao W, Ebaid R, El-Sheekh M, Abomohra A, Eladel H. Pharmaceutical applications and
consequent environmental impacts of Spirulina (Arthrospira): An overview. Grasas y Aceites.
2019, 70(1):292-301.
26. Ye C, Mu D, Horowitz N, Xue Z, Chen J, Xue M, Zhou Y, Klutts M, Zhou W. Life cycle
assessment of industrial scale production of spirulina tablets. Algal research. 2018, 34:154-63.
27. Coskun ZK, Kerem M, Gurbuz N, Omeroglu S, Pasaoglu H, Demirtas C, Lortlar N, Salman
B, Pasaoglu OT, Turgut HB. The study of biochemical and histopathological effects of
spirulina in rats with TNBS-induced colitis. Bratislavske lekarske listy. 2011, 112(5):235-43.
28. Asghari A, Fazilati M, Latifi AM, Salavati H, Choopani A. A review on antioxidant properties
of Spirulina. Journal of Applied Biotechnology Reports. 2016, 3(1):345-51.
29. Czerwonka A, Kaławaj K, Sławińska-Brych A, Lemieszek MK, Bartnik M, Wojtanowski KK,
Zdzisińska B, Rzeski W. Anticancer effect of the water extract of a commercial Spirulina
(Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine &
Pharmacotherapy. 2018, 106:292-302.
30. Hassan AM, Abdel-Aziem SH, Abdel-Wahhab MA. Modulation of DNA damage and
alteration of gene expression during aflatoxicosis via dietary supplementation of Spirulina
(Arthrospira) and whey protein concentrate. Ecotoxicology and environmental safety. 2012,
79:294-300.
31. Nowruzi, B, Anvar, SAA, Ahari, H. Extraction, purification and evaluation of antimicrobial
and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1.
Journal of Microbial World. 2020, 13 (2): 138-153.
32. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Optimization
of cultivation conditions to maximize extracellular investments of two Nostoc strains. Arch.
Hydrobiol. Suppl. Algol. Stud. 2013, 42(1):63-76.
33. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Progress in Biological
Sciences. 2013, 3(1):79-85.
34. Nowruzi, B., Blanco, S., Nejadsattari, T. Chemical and molecular evidences for the poisoning
of a duck by Anatoxin-a, Nodularin and Cryptophycin at the coast of the ShoorMast Lake
(Mazandaran province, Iran). International Journal of Algae (IJA) 2018, 20 (4): 359-376.
35. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a Nostoc sp. Algae. 2012, 27(4):303-13.
36. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Progress in Biological
Sciences. 2013, 3(1):79-85.
37. Abeer A. Abu Zaid, Doaa M. Hammed and Eman M. SharafAntioxidant and Anticancer
Activity of Spirulina Platensis Water Extract, International Journal of Pharmacology. 2015,
11 (7): 846-851.
38. Raghad J. Fayyad, Alaa Mohammed Ali, Ahmed S. Dwaish And Ahmed Khayoon Abed
Al–Abboodi- Anticancer Activity of Spiulina Platensis Methanolic Extracts Against L20b
And Mcf7 Human Cancer Cell Lines, Plant Archives,2019, 19(1):1419- 1426.
39. FlorYohanaflores Hernandez, Sanghamitra Khandual, Inocencia Guadaluperamírez
López - Cytotoxic Effect of Spirulina Platensis Extracts on Human Acute Leukemia Kasumi-1
and Chronic Myelogenous Leukemia K-562 Cell Lines, Asian Pacific Journal of Topical
Biomedicine, 2017, 7(1): 14-19.
40. Fayyad RJ, Mohammed Ali AN, Dwaish AS, Khayoon A. Anticancer Activity of Spirulina
platensis Methanolic Extracts against l20b and MCF7 Human Cancer Cell Lines. Plant Arch.
2019, 19(1):1419-26.
41. Sommella E, Carrizzo A, Merciai F, Di Sarno V, Carbone D, De Lucia M, Musella S,
Vecchione C, Campiglia P. Analysis of the metabolic switch induced by the spirulina peptide
SP6 in high fat diet ApoE-/-mice model: A direct infusion FT-ICR-MS based approach.
Journal of Pharmaceutical and Biomedical Analysis. 2021, 20: 11-25.
42. Konícková R, Vanková K, Vaníková J, Vánová K, Muchová L, Subhanová I, Zadinová M,
Zelenka J, Dvorák A, Kolár M, Strnad H. Anti-cancer effects of blue-green alga Spirulina
platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology.
2014, 13(2): 273-83.
43. Sinanoglu O, Yener AN, Ekici S, Midi A, Aksungar FB. The protective effects of spirulina in
cyclophosphamide induced nephrotoxicity and urotoxicity in rats. Urology. 2012, 80(6):1392
44. Li TT, Liu YY, Wan XZ, Huang ZR, Liu B, Zhao C. Regulatory efficacy of the
polyunsaturated fatty acids from microalgae spirulina platensis on lipid metabolism and gut
microbiota in high-fat diet rats. International journal of molecular sciences. 2018, 19
(10):3075.
45. Okamoto T, Kawashima H, Osada H, Toda E, Homma K, Nagai N, Imai Y, Tsubota K,
Ozawa Y. Dietary spirulina supplementation protects visual function from photostress by
suppressing retinal neurodegeneration in mice. Translational Vision Science & Technology.
2019, 8(6):20-31.
46. Mazokopakis EE, Starakis IK, Papadomanolaki MG, et al. The hypolipidaemic effects of
Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective
study. J Sci Food Agric 2014, 94:432–7.
47. Güroy D, Güroy B, Merrifield DL, Ergün S, Tekinay AA, Yiğit M. Effect of dietary Ulva and
Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss
(Walbaum), during a starvation period. Journal of animal physiology and animal nutrition.
2011, 95(3):320-7.
48. Bagheri R, Negaresh R, Motevalli MS, Wong A, Ashtary-Larky D, Kargarfard M,
Rashidlamir A. Spirulina supplementation during gradual weight loss in competitive wrestlers.
British Journal of Nutrition. 2021, 12:1-9.
49. Huang H, Liao D, Pu R, et al. Quantifying the effects of spirulina supplementation on plasma
lipid and glucose concentrations, body weight, and blood pressure. Diabetes Metab Syndr
Obes 2018, 11:729–42.
50. DiNicolantonio JJ, Bhat AG, OKeefe J. Effects of spirulina on weight loss and blood lipids: a
review. Open heart. 2020, 7(1):12-21.
51. Donato NR, de Melo Queiroz AJ, de Figueiredo RM, Feitosa RM, Moreira ID, de Lima JF.
Production of Cookies Enriched With Spirulina platensis Biomass. Journal of Agricultural
Studies. 2019, 7(4):323-42.
52. Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M.
Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar):
Effect of agitation, salinity and CO2 addition. Food and bioproducts Processing. 2011, 89
(3):209-16.
53. Chauhan UK, Pathak N. Effect of different conditions on the production of chlorophyll by
Spirulina platensis. J Algal Biomass Utln. 2010, 1(4):89-99.
54. Pegallapati AK, Nirmalakhandan N. Energetic evaluation of an internally illuminated
photobioreactor for algal cultivation. Biotechnology letters. 2011, 33(11):21-31.
55. Zarezadeh M, Faghfouri AH, Radkhah N, Foroumandi E, Khorshidi M, Rasouli A, Zarei M,
Mohammadzadeh Honarvar N, Hazhir Karzar N, Ebrahimi Mamaghani M. Spirulina
supplementation and anthropometric indices: A systematic review and meta‐analysis of
controlled clinical trials. Phytotherapy Research. 2021, 35(2):577-86.
56. Ronda SR, Bokka CS, Ketineni C, Rijal B, Allu PR. Aeration effect on Spirulina platensis
growth and γ-linolenic acid production. Brazilian Journal of Microbiology. 2012, 43(1):12-20.
57. Sheikhi Nejad A, Lababpour A, Moazami N. Increasing cyanobacteria Spirulina production
with mixing and chemical composition of culture medium. Journal of Plant Research (Iranian
Journal of Biology). 2015, 28(2):344-53.
58. Zhao B, Cui Y, Fan X, Qi P, Liu C, Zhou X, Zhang X. Anti-obesity effects of Spirulina
platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PloS
one. 2019, 14(6): 12-24.
59. Uribe-Wandurraga ZN, Igual M, García-Segovia P, Martínez-Monzó J. In vitro
bioaccessibility of minerals from microalgae-enriched cookies. Food & Function. 2020, 11(3):
86-94.
60. Han P, Li J, Zhong H, Xie J, Zhang P, Lu Q, Li J, Xu P, Chen P, Leng L, Zhou W.
Anti-oxidation properties and therapeutic potentials of spirulina. Algal Research. 2021, 55:102
-240.
61. Setyaningsih I, Mahmudah P, Trilaksani W, Tarman K, Santoso J. Spirulina biscuit
formulation with coconut cream substitution and its shelf life estimation. InIOP Conference
Series: Earth and Environmental Science 2020, 414 (1): 12-22.
62. Sahin OI. Effect of Spirulina Biomass Fortification for Biscuits and Chocolates. Turkish
Journal of Agriculture-Food Science and Technology. 2019, 7(4):583-7.
63. De la Jara A, Ruano-Rodriguez C, Polifrone M, Assunçao P, Brito-Casillas Y, Wägner AM,
Serra-Majem L. Impact of dietary Arthrospira (Spirulina) biomass consumption on human
health: main health targets and systematic review. Journal of Applied Phycology. 2018, 30
(4):2403-23.
64. Singh PJ, Khurma J, Singh A. Preparation, characterisation, engine performance and emission
characteristics of coconut oil based hybrid fuels. Renewable Energy. 2010, 35(9):2065-70.
65. Iyer UM, Dhruv SA, Mani IU. Spirulina and its therapeutic implications as a food product.
Spirulina human nutrition and health. Edited by: Belay A, Gershwin ME. UK: CRC press,
Taylor & Francis Publishing group. 2007, 8: 51-70.
66. Da Silva SP, do Valle AF, Perrone D. Microencapsulated Spirulina maxima biomass as an
ingredient for the production of nutritionally enriched and sensorially well-accepted vegan
biscuits. LWT. 2021, 142:11-29.
67. Agustini TW, Ma’ruf WF, Widayat W, Suzery M, Hadiyanto H, Benjakul S. Application of
Spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory
perspectives. Jurnal Teknologi. 2016, 78: 4-12.
68. Malik P, Kempanna C, Paul A. Quality characteristics of ice cream enriched with Spirulina
powder. International Journal of Food and Nutrition Science. 2013, 2(1):44-50.
69. Lu J, Pua XH, Liu CT, Chang CL, Cheng KC. The implementation of HACCP management
system in a chocolate ice cream plant. Journal of food and drug analysis. 2014, 22(3):391-8.
70. Oliveira ME, Garcia EF, Queiroga RD, Souza EL. Technological, physicochemical and
sensory characteristics of a Brazilian semi-hard goat cheese (coalho) with added probiotic
lactic acid bacteria. Scientia Agricola. 2012, (6):370-9.
71. Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A. Carotenoids and their isomers: color
pigments in fruits and vegetables. Molecules. 2011, 16(2):1710-38.
72. Hassaan MS, Mohammady EY, Soaudy MR, Sabae SA, Mahmoud AM, El-Haroun ER.
Comparative study on the effect of dietary β-carotene and phycocyanin extracted from
Spirulina platensis on immune-oxidative stress biomarkers, genes expression and intestinal
enzymes, serum biochemical in Nile tilapia, Oreochromis niloticus. Fish & Shellfish
Immunology. 2021, 108: 63-72.
73. Yuanita L. Pengaruh pH dan Lama Perebusan Kacang Panjang terhadap Efisiensi Regenerasi
Hb Rattus norvegicus dan Pengikatan Fe oleh Serat Pangan [The Effect of pH and Boiling
Time of Legume on Regeneration Efficiency of Haemoglobin in Rattus norvegicus and Iron
Binding by Dietary Fiber]. Media Kedokteran Hewan. 2005, 21(2): 69-72.
74. Agustini TW, Maâ WF, Widayat W, Suzery M, Hadiyanto H, Benjakul S. Application of
Spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory
perspectives. Jurnal Teknologi. 2016, 78: 14-29.
_||_
K. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain
FSN. Journal of natural products. 2014, 77(8):1784-90.
2. Nowruzi B, Haghighat S, Fahimi H, Mohammadi E. Nostoc cyanobacteria species: a new and
rich source of novel bioactive compounds with pharmaceutical potential. Journal of
Pharmaceutical Health Services Research. 2018, 9(1):5-12.
3. Nowruzi B, Sarvari G, Blanco S. Applications of cyanobacteria in biomedicine. InHandb. Algal
Sci. Microbiol. Technol. Med 2020. Elsevier Amsterdam: 441-453.
4. Nowruzi B, Sarvari G, Blanco S. The cosmetic application of cyanobacterial secondary
metabolites. Algal Research. 2020, 49:101959.
5. Nowruzi B, Wahlsten M, Jokela J. A report on finding a new peptide aldehyde from
cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey’s analysis. Iranian journal of
biotechnology. 2019, 17(2): 18-29.
6. Nowruzi B, Blanco S. In silico identification and evolutionary analysis of candidate genes
involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran.
Phytochemistry Letters. 2019, 29:199-211.
7. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a Nostoc sp. Algae. 2012, 27(4):303-405.
8. Rajabpour N, Nowruzi B, Ghobeh M. Investigation of the toxicity, antioxidant and
antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta
Biologica Slovenica. 2019, 62:2-15.
9. Safavi M, Nowruzi B, Estalaki S, Shokri M. Biological Activity of Methanol Extract from
Nostoc sp. N42 and Fischerella sp. S29 Isolated from Aquatic and Terrestrial Ecosystems.
International Journal on Algae. 2019, 21(4): 31-45.
10. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Optimization
of cultivation conditions to maximize extracellular investments of two Nostoc strains.
Algological Studies. 2013, 142(1):63-76.
11. Maujean E, Desobry S, Gillet G, Poupard N, Desjardins‐Lavisse I, Desobry‐Banon S.
Influence of pressurised cryogenic nitrogen technology on Arthrospira platensis (spirulina)
preservation during storage. International Journal of Food Science & Technology. 2021, 56
(5):2443-51.
12. Wu H, Gao K, Villafañe VE, Watanabe T, Helbling EW. Effects of solar UV radiation on
morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Applied
and environmental microbiology. 2005, 71(9):5004-13.
13. Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA. Spirulina in clinical
practice: evidence-based human applications. Evidence-based complementary and alternative
medicine. 2011: 1-4.
14. Rajasekar P, Palanisamy S, Anjali R, Vinosha M, Elakkiya M, Marudhupandi T, Tabarsa M,
You S, Prabhu NM. Isolation and structural characterization of sulfated polysaccharide from
Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and
Zebrafish growth and reproductive performance. International journal of biological
macromolecules. 2019, 141: 809-21.
15. Zarezadeh M, Faghfouri AH, Radkhah N, Foroumandi E, Khorshidi M, Rasouli A, Zarei M,
Mohammadzadeh Honarvar N, Hazhir Karzar N, Ebrahimi Mamaghani M. Spirulina
supplementation and anthropometric indices: A systematic review and meta‐analysis of
controlled clinical trials. Phytotherapy Research. 2021, 35(2):577-86.
16. Capelli B, Cysewski GR. Potential health benefits of spirulina microalgae. Nutrafoods. 2010,
9(2):19-26.
17. Siva Kiran RR, Madhu GM, Satyanarayana SV. Spirulina in combating protein energy
malnutrition (PEM) and protein energy wasting (PEW)-A review. Journal of Nutrition
Research. 2015, 3(1):62-79.
18. Kumar D, Dhar DW, Pabbi S, Kumar N, Walia S. Extraction and purification of
C-phycocyanin from Spirulina platensis (CCC540). Indian Journal of Plant Physiology. 2014,
19(2):184-8.
19. Tessier R, Calvez J, Khodorova N, Gaudichon C. Protein and amino acid digestibility of 15 N
Spirulina in rats. European Journal of Nutrition. 2020, 1:1-7.
20. Ali SK, Saleh AM. Spirulina-an overview. International journal of Pharmacy and
Pharmaceutical sciences. 2012, 4(3):9-15.
21. Banakar V, Alam Q, Rajendra SV, Pandit A, Cladious A, Gnanaprakash K. Spirulina, The
Boon of Nature. International Journal of Research in Pharmaceutical Sciences. 2020, 11(1):57
-62.
22. Anantharajappa K, Dharmesh SM, Ravi S. Gastro-protective potentials of Spirulina: role of
vitamin B 12. Journal of Food Science and Technology. 2020, 57(2):745-53.
23. Nowruzi B, Jouni J. Identification of Four Different Chlorophyll Allomers of Nostoc Sp. by
Liquid Chromatography- Mass Spectrometer (LC-MS) Int J Plant Stu. 2019, 2(1): 1-4.
24. Rosario JC, Josephine RM. Mineral profile of edible algae Spirulina platensis. Int J Curr
Microbiol App Sci. 2015, 4(1):478-83.
25. Shao W, Ebaid R, El-Sheekh M, Abomohra A, Eladel H. Pharmaceutical applications and
consequent environmental impacts of Spirulina (Arthrospira): An overview. Grasas y Aceites.
2019, 70(1):292-301.
26. Ye C, Mu D, Horowitz N, Xue Z, Chen J, Xue M, Zhou Y, Klutts M, Zhou W. Life cycle
assessment of industrial scale production of spirulina tablets. Algal research. 2018, 34:154-63.
27. Coskun ZK, Kerem M, Gurbuz N, Omeroglu S, Pasaoglu H, Demirtas C, Lortlar N, Salman
B, Pasaoglu OT, Turgut HB. The study of biochemical and histopathological effects of
spirulina in rats with TNBS-induced colitis. Bratislavske lekarske listy. 2011, 112(5):235-43.
28. Asghari A, Fazilati M, Latifi AM, Salavati H, Choopani A. A review on antioxidant properties
of Spirulina. Journal of Applied Biotechnology Reports. 2016, 3(1):345-51.
29. Czerwonka A, Kaławaj K, Sławińska-Brych A, Lemieszek MK, Bartnik M, Wojtanowski KK,
Zdzisińska B, Rzeski W. Anticancer effect of the water extract of a commercial Spirulina
(Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine &
Pharmacotherapy. 2018, 106:292-302.
30. Hassan AM, Abdel-Aziem SH, Abdel-Wahhab MA. Modulation of DNA damage and
alteration of gene expression during aflatoxicosis via dietary supplementation of Spirulina
(Arthrospira) and whey protein concentrate. Ecotoxicology and environmental safety. 2012,
79:294-300.
31. Nowruzi, B, Anvar, SAA, Ahari, H. Extraction, purification and evaluation of antimicrobial
and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1.
Journal of Microbial World. 2020, 13 (2): 138-153.
32. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Optimization
of cultivation conditions to maximize extracellular investments of two Nostoc strains. Arch.
Hydrobiol. Suppl. Algol. Stud. 2013, 42(1):63-76.
33. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Progress in Biological
Sciences. 2013, 3(1):79-85.
34. Nowruzi, B., Blanco, S., Nejadsattari, T. Chemical and molecular evidences for the poisoning
of a duck by Anatoxin-a, Nodularin and Cryptophycin at the coast of the ShoorMast Lake
(Mazandaran province, Iran). International Journal of Algae (IJA) 2018, 20 (4): 359-376.
35. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a Nostoc sp. Algae. 2012, 27(4):303-13.
36. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification
and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Progress in Biological
Sciences. 2013, 3(1):79-85.
37. Abeer A. Abu Zaid, Doaa M. Hammed and Eman M. SharafAntioxidant and Anticancer
Activity of Spirulina Platensis Water Extract, International Journal of Pharmacology. 2015,
11 (7): 846-851.
38. Raghad J. Fayyad, Alaa Mohammed Ali, Ahmed S. Dwaish And Ahmed Khayoon Abed
Al–Abboodi- Anticancer Activity of Spiulina Platensis Methanolic Extracts Against L20b
And Mcf7 Human Cancer Cell Lines, Plant Archives,2019, 19(1):1419- 1426.
39. FlorYohanaflores Hernandez, Sanghamitra Khandual, Inocencia Guadaluperamírez
López - Cytotoxic Effect of Spirulina Platensis Extracts on Human Acute Leukemia Kasumi-1
and Chronic Myelogenous Leukemia K-562 Cell Lines, Asian Pacific Journal of Topical
Biomedicine, 2017, 7(1): 14-19.
40. Fayyad RJ, Mohammed Ali AN, Dwaish AS, Khayoon A. Anticancer Activity of Spirulina
platensis Methanolic Extracts against l20b and MCF7 Human Cancer Cell Lines. Plant Arch.
2019, 19(1):1419-26.
41. Sommella E, Carrizzo A, Merciai F, Di Sarno V, Carbone D, De Lucia M, Musella S,
Vecchione C, Campiglia P. Analysis of the metabolic switch induced by the spirulina peptide
SP6 in high fat diet ApoE-/-mice model: A direct infusion FT-ICR-MS based approach.
Journal of Pharmaceutical and Biomedical Analysis. 2021, 20: 11-25.
42. Konícková R, Vanková K, Vaníková J, Vánová K, Muchová L, Subhanová I, Zadinová M,
Zelenka J, Dvorák A, Kolár M, Strnad H. Anti-cancer effects of blue-green alga Spirulina
platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology.
2014, 13(2): 273-83.
43. Sinanoglu O, Yener AN, Ekici S, Midi A, Aksungar FB. The protective effects of spirulina in
cyclophosphamide induced nephrotoxicity and urotoxicity in rats. Urology. 2012, 80(6):1392
44. Li TT, Liu YY, Wan XZ, Huang ZR, Liu B, Zhao C. Regulatory efficacy of the
polyunsaturated fatty acids from microalgae spirulina platensis on lipid metabolism and gut
microbiota in high-fat diet rats. International journal of molecular sciences. 2018, 19
(10):3075.
45. Okamoto T, Kawashima H, Osada H, Toda E, Homma K, Nagai N, Imai Y, Tsubota K,
Ozawa Y. Dietary spirulina supplementation protects visual function from photostress by
suppressing retinal neurodegeneration in mice. Translational Vision Science & Technology.
2019, 8(6):20-31.
46. Mazokopakis EE, Starakis IK, Papadomanolaki MG, et al. The hypolipidaemic effects of
Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective
study. J Sci Food Agric 2014, 94:432–7.
47. Güroy D, Güroy B, Merrifield DL, Ergün S, Tekinay AA, Yiğit M. Effect of dietary Ulva and
Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss
(Walbaum), during a starvation period. Journal of animal physiology and animal nutrition.
2011, 95(3):320-7.
48. Bagheri R, Negaresh R, Motevalli MS, Wong A, Ashtary-Larky D, Kargarfard M,
Rashidlamir A. Spirulina supplementation during gradual weight loss in competitive wrestlers.
British Journal of Nutrition. 2021, 12:1-9.
49. Huang H, Liao D, Pu R, et al. Quantifying the effects of spirulina supplementation on plasma
lipid and glucose concentrations, body weight, and blood pressure. Diabetes Metab Syndr
Obes 2018, 11:729–42.
50. DiNicolantonio JJ, Bhat AG, OKeefe J. Effects of spirulina on weight loss and blood lipids: a
review. Open heart. 2020, 7(1):12-21.
51. Donato NR, de Melo Queiroz AJ, de Figueiredo RM, Feitosa RM, Moreira ID, de Lima JF.
Production of Cookies Enriched With Spirulina platensis Biomass. Journal of Agricultural
Studies. 2019, 7(4):323-42.
52. Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M.
Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar):
Effect of agitation, salinity and CO2 addition. Food and bioproducts Processing. 2011, 89
(3):209-16.
53. Chauhan UK, Pathak N. Effect of different conditions on the production of chlorophyll by
Spirulina platensis. J Algal Biomass Utln. 2010, 1(4):89-99.
54. Pegallapati AK, Nirmalakhandan N. Energetic evaluation of an internally illuminated
photobioreactor for algal cultivation. Biotechnology letters. 2011, 33(11):21-31.
55. Zarezadeh M, Faghfouri AH, Radkhah N, Foroumandi E, Khorshidi M, Rasouli A, Zarei M,
Mohammadzadeh Honarvar N, Hazhir Karzar N, Ebrahimi Mamaghani M. Spirulina
supplementation and anthropometric indices: A systematic review and meta‐analysis of
controlled clinical trials. Phytotherapy Research. 2021, 35(2):577-86.
56. Ronda SR, Bokka CS, Ketineni C, Rijal B, Allu PR. Aeration effect on Spirulina platensis
growth and γ-linolenic acid production. Brazilian Journal of Microbiology. 2012, 43(1):12-20.
57. Sheikhi Nejad A, Lababpour A, Moazami N. Increasing cyanobacteria Spirulina production
with mixing and chemical composition of culture medium. Journal of Plant Research (Iranian
Journal of Biology). 2015, 28(2):344-53.
58. Zhao B, Cui Y, Fan X, Qi P, Liu C, Zhou X, Zhang X. Anti-obesity effects of Spirulina
platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PloS
one. 2019, 14(6): 12-24.
59. Uribe-Wandurraga ZN, Igual M, García-Segovia P, Martínez-Monzó J. In vitro
bioaccessibility of minerals from microalgae-enriched cookies. Food & Function. 2020, 11(3):
86-94.
60. Han P, Li J, Zhong H, Xie J, Zhang P, Lu Q, Li J, Xu P, Chen P, Leng L, Zhou W.
Anti-oxidation properties and therapeutic potentials of spirulina. Algal Research. 2021, 55:102
-240.
61. Setyaningsih I, Mahmudah P, Trilaksani W, Tarman K, Santoso J. Spirulina biscuit
formulation with coconut cream substitution and its shelf life estimation. InIOP Conference
Series: Earth and Environmental Science 2020, 414 (1): 12-22.
62. Sahin OI. Effect of Spirulina Biomass Fortification for Biscuits and Chocolates. Turkish
Journal of Agriculture-Food Science and Technology. 2019, 7(4):583-7.
63. De la Jara A, Ruano-Rodriguez C, Polifrone M, Assunçao P, Brito-Casillas Y, Wägner AM,
Serra-Majem L. Impact of dietary Arthrospira (Spirulina) biomass consumption on human
health: main health targets and systematic review. Journal of Applied Phycology. 2018, 30
(4):2403-23.
64. Singh PJ, Khurma J, Singh A. Preparation, characterisation, engine performance and emission
characteristics of coconut oil based hybrid fuels. Renewable Energy. 2010, 35(9):2065-70.
65. Iyer UM, Dhruv SA, Mani IU. Spirulina and its therapeutic implications as a food product.
Spirulina human nutrition and health. Edited by: Belay A, Gershwin ME. UK: CRC press,
Taylor & Francis Publishing group. 2007, 8: 51-70.
66. Da Silva SP, do Valle AF, Perrone D. Microencapsulated Spirulina maxima biomass as an
ingredient for the production of nutritionally enriched and sensorially well-accepted vegan
biscuits. LWT. 2021, 142:11-29.
67. Agustini TW, Ma’ruf WF, Widayat W, Suzery M, Hadiyanto H, Benjakul S. Application of
Spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory
perspectives. Jurnal Teknologi. 2016, 78: 4-12.
68. Malik P, Kempanna C, Paul A. Quality characteristics of ice cream enriched with Spirulina
powder. International Journal of Food and Nutrition Science. 2013, 2(1):44-50.
69. Lu J, Pua XH, Liu CT, Chang CL, Cheng KC. The implementation of HACCP management
system in a chocolate ice cream plant. Journal of food and drug analysis. 2014, 22(3):391-8.
70. Oliveira ME, Garcia EF, Queiroga RD, Souza EL. Technological, physicochemical and
sensory characteristics of a Brazilian semi-hard goat cheese (coalho) with added probiotic
lactic acid bacteria. Scientia Agricola. 2012, (6):370-9.
71. Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A. Carotenoids and their isomers: color
pigments in fruits and vegetables. Molecules. 2011, 16(2):1710-38.
72. Hassaan MS, Mohammady EY, Soaudy MR, Sabae SA, Mahmoud AM, El-Haroun ER.
Comparative study on the effect of dietary β-carotene and phycocyanin extracted from
Spirulina platensis on immune-oxidative stress biomarkers, genes expression and intestinal
enzymes, serum biochemical in Nile tilapia, Oreochromis niloticus. Fish & Shellfish
Immunology. 2021, 108: 63-72.
73. Yuanita L. Pengaruh pH dan Lama Perebusan Kacang Panjang terhadap Efisiensi Regenerasi
Hb Rattus norvegicus dan Pengikatan Fe oleh Serat Pangan [The Effect of pH and Boiling
Time of Legume on Regeneration Efficiency of Haemoglobin in Rattus norvegicus and Iron
Binding by Dietary Fiber]. Media Kedokteran Hewan. 2005, 21(2): 69-72.
74. Agustini TW, Maâ WF, Widayat W, Suzery M, Hadiyanto H, Benjakul S. Application of
Spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory
perspectives. Jurnal Teknologi. 2016, 78: 14-29.