Genomic Selection Signatures in Two French and Swedish Holstein Cattle Breeds Provide Evidence for Several Potential Candidate Genes Linked to Economic Traits
محورهای موضوعی : CamelR. Salehi 1 , A. Javanmard 2 , M. Mokhber 3 , S. Alijani 4
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
کلید واژه: genomics, annotated regions, candidate genes, selection sweep, signature of selection,
چکیده مقاله :
The genomes of domestic animals have been artificially selected during long periods of domestication and have led to many significant changes in their economic traits. Exploring these changes is useful to expand our knowledge about the domestication process, understand the complexity of genetic diversity in livestock, and make an appropriate breeding decision. The genotypic information of 23 individuals representing French and Swedish Holsteins was used to detect signature signs between these two breeds. Quality control and data filtering were performed using PLINK software. The principal component analysis was performed to determine genetic diversity. In addition, linkage disequilibrium (LD), ancestral, and recent effective population size (Ne) were separately estimated for each breed. The signature of selection was determined by the fixation index (FST) statistic. The corrected r2 (calculated statistics for LD) between single nucleotide polymorphisms (SNPs) decreased with increasing the physical distance from 100 Kb to 7.5 Mb (from about 0.3 to 0.09 in both breeds). These values were slightly smaller for the French breed. The effective population size was estimated at 1775 and 2120 individuals for French and Swedish Holsteins 900 generations ago to 31 and 39 in the recent generation, respectively. Overall, three regions with outlier FST values were identified as the signature of selection. The flanking SNP was mostly located on BTA2, BTA16, and BTA19. Candidate genes were found to be associated with SERTAD (liver metabolism and health), SYT14 (meat yield and marble levels), IRF6 (immune system), HSD11B19 (heat stress), LAMB3, and (fat deposition). Therefore, these potential genes can be considered invaluable genetic resources for future research to attempt to create generations of commercial breeds of cattle.
Alejandra M., Ana C., Wellington B., Gustavo P., Viviana H., Vallejo A. and Morea O. (2022). Genetic architecture and signatures of selection in the caqueteño creole (Colombian Native Cattle). Diversity. 14, 828-835.
Barbato M., Orozco-terWengel P.A., Tapio M. and Bruford M.W. (2015). SNeP: A tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 6, 1-6.
Biegelmeyer P., Gulias-Gomes C.C., Caetano A.R., Steibel J.P. and Cardoso F.F. (2016). Linkage disequilibrium, persistence of phase and e_ective population size estimates in Hereford and Braford cattle. BMC Genet. 17, 32-45.
Bodenmüller Filho A. Damasceno J.C., Previdelli I.T.S., Santana R.G., Ramos C.E.C.D.O. and Santos G.T.D. (2010). Typology of production systems based on the milk characteristics. Rev. Bras. Zootec. 39, 1832-1839.
Browning B.L. and Browning S.R. (2011). A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210-223.
Corbin L.J., Liu A.Y.H., Bishop S.C. and Woolliams J.A. (2012). Estimation of historical effective population size using linkage disequilibria with marker data. Anim. Breed. Genet. 129, 257–270.
Cruz V.A.R., Oliveira H.R., Brito L.F., Fleming A., Larmer S., Miglior F. and Schenkel F.S. (2019). Genome-Wide Association Study for Milk Fatty Acids in Holstein Cattle Accounting for the DGAT1 Gene Effect. Animals (Basel). 9, 997-1009.
Decker J.E., McKay S.D., Rolf M.M., Kim J.W., Alcala´ A.M., Sonstegard T.S., Hanotte O., Go¨therstro¨ A., Seabury C.M., Praharani L., Babar M.E., Correia de Almeida Regitano L., Yildiz1 M.A., Heaton M.P., Liu W.S., Lei C.Z., Reecy J.M., Saif-Ur-Rehman M., Schnabel R.D. and Taylor J.F. (2014). Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10(3), e1004254.
Edea Z., Dadi H., Dessie T., Lee S.H. and Kim K.S. (2015). Genome-wide linkage disequilibrium analysis of indigenous cattle breeds of Ethiopia and Korea using di_erent SNP genotyping BeadChips. Genes Genom. 37, 759-765.
Espigolan R., Baldi F., Boligon A.A. Souza F.R.P., Gordo D.G.M. and Tonussi R.L. (2013). Study of whole genome linkage disequilibriumin Nellore cattle. BMC Genom. 14, 305-315.
Farnir F., Coppieters W., Arranz J.J., Berzi P., Cambisano N., Grisart B., Karim L., Marcq F., Moreau L., Mni M., Nezer C., Simon P., Vanmanshoven P., Wagenaar D. and Georges M. (2000). Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10, 220-227.
Feitosa F.L.B., Pereira A.S.C., Mueller L.F., Fonseca P.A., Braz C.U., Amorin S., Espigolan R., Lemos M.A., Albuquerque L.G. and Schenkel F.S. (2021). Genome-wide association study for beef fatty acid profile using haplotypes in Nellore Cattle. Livest. Sci. 245, 104396-104405.
Fontanesi L., Scotti E. and Russo V. (2010). Analysis of SNPs in the KIT gene of cattle with different coat colour patterns and perspectives to use these markers for breed traceability and authentication of beef and dairy products. Italian J. Anim. Sci. 9, 42-52.
Fraga A.B., De Lima Silva F., Hongyu K., Da Silva Santos D., Murphy T.W. and Lopes F.B. (2016). Multivariate analysis to evaluategenetic groups and production tr8.aits of crossbred Holstein × Zebu cows. Trop. Anim. Health Prod. 48, 533-542.
Giacomoni E.H., Fernández-Stolz G.P. and Freitas T.R.O. (2008). Genetic diversity in the Pantaneiro horse breed assessed using microsatellite DNA markers. Genet. Mol. Res. 7(1), 261-270.
Groeneveld L.F., Lenstra J.A., Eding H., ToroM. A., Scherf B. and Pilling D. (2010). Genetic diversity in farm animals. Anim. Genet. 41, 6-31.
Hardie L.C., VandeHaar M.J., Tempelman R.J., Weigel K.A., Armentano L.E. and Wiggans G.R. (2017). The genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows. Dairy Sci. 100, 9061-9075.
Holsinger K.E. and Weir B.S. (2009). Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat. Rev. Genet. 10(9), 639-650.
Huang D.W., Sherman B.T. and Lempicki R.A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1), 1-13.
Jemaa S.B., Thamri N., Mnara S., Rebours E., Rocha D., Boussaha M., Jemaa S.B., Thamri N., Mnara S. and Rebours E. (2019). Linkage disequilibrium and past e_ective population size in native Tunisian cattle. Genet. Mol. Biol. 42, 52-61.
Johnsson M. (2018). Integrating selection mapping with genetic mapping and functional genomics. Front. Genet. 9, 603-610.
Kim J., Hanotte O., Mwai O.A., Dessie T., Bashir S. and Diallo B. (2013). The genome landscape of indigenous African cattle. Genome Biol. 18, 34-45.
Khatkar M.S., Collins A., Cavanagh J.A.L., Hawken R., Hobbs M., Zenger K., Barris W., McClintock A.E., Thomson P.C., Nicholas F.W. and Raadsma H.W. (2006). A first generation metric linkage disequilibrium map of bovine chromosome 6. Genetics. 174, 79-85.
Kim E.S. and Kirkpatrick B.W. (2009). Genome-widescan for bovine twinning rate QTL using linkage disequilibrium. Anim. Genet. 40, 300-307.
Kour A., Niranjan S.K., Malayaperumal M., Surati U., Pukhrambam M., Sivalingam J., Kumar A. and Sarkar M. (2022). Genomic diversity profiling and breed-specific evolutionary signatures of selection in arunachali yak. Genes. 13, 2-16.
Kukuˇcková V., Moravˇcíková N., Ferenˇcakovi´c M., Simˇciˇc M., Mészáros G., Sölkner J., Trakovická A., Kadleˇcík O., Curik I. and Kasarda R. (2017). Genomic characterization of Pinzgau cattle: Genetic conservation and breeding perspectives. Conserv. Genet. 18, 893-910.
Makina S.O., Taylor J.F., van Marle-Köster E., Muchadeyi F.C., Makgahlela M.L., MacNeil M.D. and Maiwashe A. (2015). Extent of linkage disequilibrium and e_ective population size in four South African Sanga cattle breeds. Front. Genet. 6, 11-23.
Meuwissen T. (2009) .Genetic management of small populations: A review. Acta Agric. Scand. A Anim. Sci. 59, 71-79.
Mokhber M., Moradi-Shahrbabak M., Sadeghi M., Moradi H. and Rahmani J. (2019). Estimation of effective population size of Iranian water buffalo by genomic data. Iranian J. Anim. Sci. 50, 197-205.
Mokhber M., Moradi-Shahrbabak M., Sadeghi M., Moradi-Shahrbabak H., Stella A., Nicolzzi E., Rahmaninia J. and Williams J. (2018). A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genom. 19, 449-458.
Moravčíková N., Kasarda R., Vostrý L., Krupová Z., Krupa E., Lehocká K., Olšanská B., Trakovická A., Belej L. and Golian J. (2019). Analysis of selection signatures in the beef cattle genome. J. Anim. Sci. 12, 491-503.
Orozco-ter Wengel P., Barbato M., Nicolazzi E., Biscarini F., Milanesi M. and Davies W. (2015). Revisiting demographic processes in cattle with genome-wide population genetic analysis. Front. Genet. 6, 191-205.
Pan Z.Y., He X.Y., Wang X.Y., Guo X.F., Cao X., Hu W.P., Di R., Liu Q.Y. and Chu M.X. (2016). Selection signature in domesticated animals. Yi Chuan. 38, 1069-1080.
Petersen J.L., Kalbfleisch T.S., Parris M., Tietze S.M. and Cruickshank J. (2020). MC1R and KIT haplotypes associate with pigmentation phenotypes of North American Yak (Bosgrunniens). J. Hered. 111, 182-193.
Porto Neto L.R., Bunch R.J., Harrison B.E. and Barendse W. (2012). Variation in the XKR4 gene was significantly associated with subcutaneous rump fat thickness in indicine and composite cattle. Anim. Genet. 43, 785-789.
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J. and Sham P.C. (2007). PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559-575.
Ron M. and Weller J.I. (2007). From QTL to QTN identification in livestock—Winning by points rather than knock-out. Anim. Genet. 38, 429-439.
Sargolzaei M., Schenkel F.S., Jansen G.B. and Schaeffer L.R. (2008). Extent of linkage disequilibrium in Holstein cattle in North America. Dairy Sci. 91, 2106-2117.
Simianer H., Ma Y. and Qanbari S. (2014). Statistical problems in livestock population genomics. Pp. 25-31 in Proc. 10th Congr. Genet. Appl. Livest. Prod. Vancouver, Canada.
Taye M., Lee W., Jeon S., Yoon J., Dessie T. and Hanotte O. (2017). Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome. 28, 528-541.
Tenesa A., Knott S.A., Ward D., Smith D., Williams J.L. and Visscher P.M. (2003). Estimation of linkage disequilibrium in a sample of the United Kingdom dairy cattle population using unphased genotypes. Anim. Sci. 81, 617-623.
Troy C.S., MacHugh D.E., Bailey J.F., Magee D.A., Loftus R.T. and Cunningham P. (2001). Genetic evidence for Near-Eastern origins of European cattle. Nature. 410, 1088-1091.
Upadhyay M.R., Chen W., Lenstra J.A., Goderie C.R.J., MacHugh D.E., Park S.D.E. and Crooijmans R.P.M.A. (2017). Genetic origin, ad‐ mixture and population history of aurochs (Bos primigenius) and prim‐itive European cattle. Heredity. 118, 1-8.
Weir B.S. and Cockerham C. (1983). Estimating F-statistics for the analysis of population structure. Evolution. 38, 1358-1370.
Zhao F., McParland S. and Kearney F. (2015). Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet. Sel. Evol. 47, 25-33.
Zhang S., Yao Z., Li X., Zhang Z., Liu X., Yang P., Chen N., Xia X., Lyu S., Shi Q., Wang E., Ru B., Jiang Y., Lei C., Chen H. and Huang Y. (2022). Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genom. 23, 2-10.
Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Deniskova T.E., Abdelmanova A.S., Kharzinova V.R., Sölkner J., Reyer H.,Wimmers K. and Brem, G. (2020). Selection signatures in two oldest Russian native cattle breeds revealed using high-density singlenucleotide polymorphism analysis. PLoS One. 15, e0242200.