Genetic Transformation of Amylase Gene to Ruminal Bacteroides Species Using Conjugation Consequence for Improvement of Rumen Enzyme
محورهای موضوعی : Camelح. عقبی طلب 1 , ف. مرادیان 2 , ق. رحیمی 3 , ح. رحیمیان 4
1 - Department of Animal Science, Sari Agricultural Science and Natural Resources University, Sari, Iran
2 - Department of Basic Science, Sari Agricultural Science and Natural Resources University, Sari, Iran
3 - Department of Animal Science, Sari Agricultural Science and Natural Resources University, Sari, Iran
4 - Department of Plant Protection, Sari Agricultural Science and Natural Resources University, Sari, Iran
کلید واژه: 16S rRNA gene, Manipulation, <, i>, Bacteroides<, /i>, spp, conjugation, shuttle vector,
چکیده مقاله :
Rumen bacterial strains can potentially be manipulated to perform functions different from wild type species. The most numerous species of bacteria in the rumen and gut are species of the familyBacteroidetes, whichcan have the potential for genetic modification for enzyme production. One of the genetic manipulation of rumen bacteria can perform for production of starch digestive enzyme for the enhancement of nutrient flow to the rumen. In this study, Bacteroides species were isolated from rumen of cows. The 16S rRNA gene analysis was used to confirm the classification of the Bacteroides species. The amylase gene from Bacillus spp. was cloned into expression vector pET28A and then subcloned in Escherichia coli-Bacteroides pGFK114.1 shuttle vector. Conjugation between Escherichia coli and a Bacteroides strainwas accomplished with two Escherichia coli donors containing pGFK114.1 and pRK231 and one Bacteroides strain as a recipient. Transfer of amylase gene by vector was confirmed using a marker cefoxcitin antibiotic resistant gene. The amylase activity assay showed that successful expression of enzyme occurred in ruminal Bacteroides species.
سویههای باکتریهای شکمبهای قابلیت دستکاری برای انجام عملکرد متفاوت از نوع وحشی را دارند. بیشترین تعداد سویههای باکتری شکمبه و روده از خانواده باکتروئیدها هستند که توانایی تغییر ژنتیکی جهت تولید آنزیم را دارند. یکی از دستورزی ژنتیکی باکتری شکمبه که میتواند انجام شود، تولید آنزیم هضم کننده نشاسته جهت افزایش جریان مواد غذایی به شکمبه است. در مطالعه حاضر، سویههای باکتروئید از شکمبه گاو جدا شدند. ازآنالیز ژن 16S rRNA جهت تأیید طبقهبندی گونه باکتروئیدی استفاده شد. ژن آمیلاز در وکتور بیانی pET28A همسانهسازی شد و سپس در وکتور انتقالی pGFK114.1 باکتروئید-اشرشیاکولی زیر همسانهسازی گردید. کانژوگاسیون بین اشرشیاکولی و سویه باکتروئیدی با دو دهنده اشرشیاکولی شامل وکتورهایpGFK114.1 و pRK231 و یک سویه دریافت کننده باکتروئیدی انجام شد. انتقال ژن آمیلاز توسط مارکر ژن مقاومت به آنتی بیوتیک سفوکسیتین در وکتور تأییدگردید. سنجش فعالیت آمیلاز نشان داد که بیان آنزیم در سویه باکتروئید شکمبهای به طور موفقیت آمیزی انجام گرفته است.
Avgustin G., Wright F. and Flint H.J. (1994). Genetic diversity and phylogenetic relationships among strains of Prevotella (Bacteroides) ruminicola from the rumen. Int. J. System Bacteriol. 44, 246-255.
Bechet M.P., Pheulpin H., Flint H.J., Martin J. and Dubourgier H.C. (1993). Transfer of hybrid plasmids based on the replicon pRR17 from E. coli to Bacteroides and Prevotella strains. J. Appl. Bacteriol. 74, 542-549.
Boyles D.W., Richardson C.R., Robinson K.D. and Cobb C.W. (1992). Feedlot performance of 25 steers fed steam-flaked grain sorghum with added enzymes. Proc. Western Sect. Am. Soc. Anim. Sci. 43, 502-505.
Cocconcelli P.S., Ferrari E., Rossi F. and Bottazzi V. (1992). Plasmid transformation of Ruminococcus albus by means of high voltage electroporation. FEMS Microbi. Lett. 94, 203-209.
Defrain J.M., Hippen A.R., Kalscheur K.F. and Tricarico J.M. (2005). Feeding α-amylase improve the glycemic status and performance of transition dairy cows. J. Dairy Sci. 88, 4405-4413.
Flint H.J., Thomson A.M. and Bisset J. (1988). Plasmid associated transfer of tetracycline resistance in Bacteroides ruminicola. Appl. Environ. Microb. 54, 855-860.
Forano E. and Flint H.J. (2000). Genetically modified organisms: consequences for ruminant health and nutrition. Annu. Zootech. 49, 255-271.
Heinrichs A.J., Kehoe S.I., Gehman R.M., Jones C.M. and Tricarico J.M. (2007). Effects of amylase on rumen development in neonatal dairy calves. Prof. Anim. Scientist. 23, 64-69.
Hespell R.B. (1987). Biotechnology and modification of the rumen microbial ecosysytem. Proc. Nutr. Soc. 46, 407-413.
Hespell R.B. and Whitehead T.R. (1991). Conjugal transfer of Tn916, Tn916ΔΕ and pAMB1 from Enterococcus faecalis to Butyrivibrio fibrisolvent strains. Appl. Environ. Microb. 57, 1703-1710.
Klingerman C.M., Hu W. and McDonell E.E. (2009). Dor Bedrosian M.C. and Kungjr L. An evaluation of exogenous enzymes with amylase activity for dairy cows. J. Dairy Sci. 92, 1050-1059.
Krause O.G., Richardson R. and Cobb C.O. (1989). Biological responses of steers and rats fed grains 6 with an added microbial enzyme mixture. J. Anim. Sci. 67(1), 280-286.
MackieR.I. and White B.A. (1990). Rumen microbial ecology and nutrition. J. Dairy Sci. 73, 2971-2995.
Mc Sweeney C.S., Dalrymple B.P., Gobius K.S., Krause D.O., Mackie R.L. and Xue G.P. (1999). The application of rumen biotechnology to improve the nutritive value of fibrous feedstuffs pre- and post ingestion. Livest. Prod. Sci. 59(2), 265-283.
Meyer R. and Hinds M. (1982). Multiple mechanisms for expression of compatibility by broad host-range plasmid RK2. J. Bacteriol. 152, 1078-1090.
Murphy C.G. and Malamy M.H. (1995). Requirements for strand- and site-specific cleavage within the oriT region of Tn4399, a mobilizing transposon from Bacteroides fragilis. J. Bacteriol. 177(11), 3158-3165.
Parmer N.R., Nirmal Kumar J.I. and Joshi C.G. (2015). Deep insights into carbohydrate metabolism in the rumen of Mehsani buffalo at different diet treatments. Genomics Data. 6, 59-62.
Prescott L.M., Harley J.P. and Klein D.A. (2005). Microbiology. McGraw-Hill, New York.
Russell J.B. and Wilson D.B. (1988). Potential oppurtunities and problems for genetically altered rumen microorganisms. J. Nutr. 118, 271-279.
Salyers A.A., Bonheyo G. and Shoemaker N.B. (2000). Starting a new genetic system: lessons from Bacteroides. Methods. 2, 35-46.
Scott K.P. and Flint H.J. (1995). Transfer of plasmids between strains of Escherichia coli under rumen conditions. J. Appl. Bacteriol. 78, 189-193.
Selinger L.B., Forsberg C.W. and Cheng K.J. (1996). The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe. 2, 263-284.
Shoemaker N.B., Getty C., Gardner J.F. and Saylers A.A. (1986). Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into Bacteropides chromosome. J. Bacteriol. 165, 929-936.
Shoemaker N.B., Anderson K.L., Smithson S.L. and Wang G.R. (1991). Conjugal transfer of a shuttle vector from human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella ruminicola B(1)4. Appl. Environ. Microb. 57, 2114-2120.
Shoemaker N.B., Wang G.R. and Salyers A.A. (1992). Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen. Appl. Environ. Microb. 58, 1313-1320.
Smith M.G. (1975). In vivo transfer of R factors between E.coli strains inoculated into the rumen of sheep. J. Hyg. Camb. 75, 363-370.
Smith C.J. and Hespell R.B. (1983). Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria. J. Dairy Sci. 66, 1536-1546.
Stevenson D.M. and Weimer P.J. (2007). Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75, 165-174.
Teather R.M., Erfle J.D., Crosay B. and Thomas D.Y. (1984). Cloning and expression in E. coli of cellulase genes from the rumen anaerobic Bacteroides succinogenes. P. 173 in Proc. Abstr. Annu. Meet. Am. Soc. Microbiol. St. Louis, Missouri, USA.
Thomson A.M., Flint H.J., Bechet M., Martin J. and Dubourgier H.C. (1992). A new E. coli- Bacteroides shuttle vector pRR1207 based on the Bacteroides ruminicola plasmid replicon pRR12. Curr. Microbiol. 24, 49-55.
Tricarico J.M., Johnston J.D., Dawson K.A., Hanson K.C., Mcleod K.R. and Harmon D.L. (2005). The effects of an Aspergillus oryzae extract containing alpha-amylase activity on ruminal fermentation and milk production in lactating Holstein cows. Anim. Sci. 81, 365-374.
Tricarico J.M., Abney M.D., Galyean M.L. and Rivera J.D. (2007). Effect of a dietary Aspergillus oryzae extract containing alpha amylase activity on performance and carcass characteristics of finishing beef cattle. J. Anim. Sci. 85, 802-811.
Wallace R.J. (1994). Ruminal microbiology and biotechnology. J. Anim. Sci. 7, 2992-3003.
Ware C.E., Bauchop T., Hudman J.F. and Gregg K. (1992). Cryptic plasmid pBF1 from Butyrivibrio fibriosolvens AR10. Curr. Microbiol. 24, 193-199 .
Whitehead T.R. and Hespell R.B. (1990). Heterologous expression of the Bacteroides ruminicola xylanase gene in Bacteroides fragilis and B. uniformis. Fed. European Microbiol. Soc. Lett. 66, 61-69.
Whitehead T.R. (1992). Genetic transformation of the ruminal bacteria Butyrivibrio fibrisolvens and Streptococcus bovis by electroporation. Lett. Appl. Microbiol. 1, 186-190.