Effect of Probiotic Administration Route and Dietary Nutrient Density on Growth Performance, Gut Health, and some Hematological Variables in Healthy or Eimeria Infected Broiler Chickens
محورهای موضوعی : Camelف. خلیق 1 , ا. حسنآبادی 2 , ح. نصری-مقدم 3 , ا. گلیان 4 , غ.ع. کلیدری 5
1 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
5 - Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
کلید واژه: Broiler, Probiotic, nutrient density, Coccidiosis, <i>in ovo</i> injection,
چکیده مقاله :
This experiment aimed to evaluate the effects of probiotic administration route (PAR),dietary nutrient density (DND) and Eimeria challenge (ECH) on performance, gut morphology, and hematological variables in broiler chickens. Eggs carrying 17.5-day-old broiler embryos were injected with 0.1 mL distilled water (vehicle control) or 0.1 mL distilled water containing probiotic. A group of 72 intact eggs was also included in the experimental design representing un-injected control. Hatchlings from intact and probiotic injected eggs were further evaluated in a 42-d floor-pen trial along with 465 additional hatchmate chicks. Chicks were placed in two environmentally controlled houses, each having 30 floor pens randomly assigned to the following six treatments: conventional chicks receiving a standard diet with (group 1) or without (group 2) probiotic; conventional chicks receiving a 5% diluted diet with (group 3) or without (group 4) probiotic; and in ovo probiotic-administered chicks receiving standard diet (group 5) or 5% diluted diet (group 6). All birds in one of the houses were inoculated with a pathogenic dose of an attenuated live Eimeria vaccine at 28 d. Chicks receiving in ovo probiotic showed reductions in hatch weight and yolk sac weight compared to control (P<0.05); the same group, however, had a significantly higher weight gain (WG) during the first 10 days post-hatch but this improvement disappeared with age. Groups receiving standard diet exhibited better growth performance than those fed the 5% diluted diet. Eimeria challenge caused significant adverse effects on performance traits, intestinal morphology, and hematological variables. It is concluded that neither PAR nor DND could alleviate Eimeria induced deteriorations in productivity and health of broiler chickens.
این آزمایش با هدف ارزیابی تأثیر روش تجویز پروبیوتیک (PAR)، تراکم مواد مغذی جیره (DND) و چالش آیمریا (ECH) بر عملکرد، ریختشناسی روده و متغیرهای خونی جوجههای گوشتی انجام شد. تخم مرغهای دارای جنینهای 5/17 روزه با 1/0 میلیلیتر آب مقطر (شاهد حامل) یا 1/0 میلیلیتر آب مقطر حاوی پروبیوتیک مورد تزریق قرار گرفتند. همچنین 72 عدد تخم مرغ دست نخورده نیز به عنوان گروه شاهد تزریق نشده، در آزمایش گنجانده شد. برای بررسیهای بیشتر، جوجههای خارج شده از تخممرغهای شاهد دست نخورده و تخم مرغهای دریافتکننده پروبیوتیک همراه با تعداد 465 قطعه جوجه از همان خواب ستر و گله مادر، طی یک آزمایش پن-بستر 42 روزه مورد استفاده قرار گرفتند. جوجهها در دو سالن با شرایط محیطی کنترل شده مستقر شدند. هر یک از سالنها دارای 30 عدد پن بودند که این پنها به طور تصادفی به 6 گروه تیماری زیر اختصاص یافتند: جوجههای عادی دریافتکننده جیره استاندارد با پروبیوتیک (گروه 1) یا بدون آن (گروه 2)، جوجههای عادی دریافت کننده جیره 5 درصد رقیق شده، با پروبیوتیک (گروه 3) یا بدون آن (گروه 4) و جوجههای دریافتکننده پروبیوتیک به روش تزریق درونتخم مرغی و تغذیه شده با جیره استاندارد (گروه 5) یا با جیره 5 درصد رقیق شده (گروه 6). کلیه پرندههای یکی از سالنها در سن 28 روزگی با دز پاتوژنیک از واکسن زنده (تخفیف حدت یافته) آیمریاتلقیح شدند. وزن تفریخ و وزن کیسه زرده جوجههایی که پروبیوتیک را به روش درونتخم مرغی دریافت کرده بودند، در مقایسه با جوجههای شاهد کاهش یافته بود (05/0>P)؛ با این وجود، گروه یاد شده دارای بیشترین مقدار افزایش وزن بدن در 10 روز نخست پساتفریخ بود؛ هر چند این بهبود در سنین بالاتر مشاهده نشد. گروههای دریافتکننده جیره استاندارد در مقایسه با گروههای دریافت کننده جیره 5 درصد رقیق شده، عملکرد رشد بهتری داشتند. چالش آیمریا اثرات منفی معنیداری بر صفات عملکردی، ریختشناسی روده و متغیرهای خونشناختی داشت. روی هم رفته، PAR و DND اثرات زیانبار ناشی از عفونت آیمریا بر عملکرد تولیدی و سلامت جوجههای گوشتی را کاهش ندادند.
Amerah A.M. and Ravindran V. (2015). Effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine. Poult. Sci. 94, 673-680.
Aviagen. (2014a). Ross 308: Broiler Nutrition Specifications. Huntsville, Alabama, USA.
Aviagen. (2014b). Ross 308: Broiler Management Handbook. Huntsville, Alabama, USA.
Aylott M.V., Vestad O.H., Stephens J.F. and Turk D.E. (1968). Effect of coccidial infection upon passage rates of digestive tract contents of chicks. Poult. Sci. 46, 900-904.
Britton W.M., Hill C.H. and Barber C.W. (1964). A mechanism of interaction between dietary protein levels and coccidiosis in chicks. J. Nutr. 82, 306-310.
Conway D.P. and McKenzie M.E. (2007). Poultry Coccidiosis Diagnostic and Testing Procedures. Blackwell Publishing Professional. Ames, Iowa, USA.
Danforth H.D., Augustine P.C., Ruff M.D. and McCandliss R. (1989). Genetically engineered antigen confers partial protection against avian coccidial parasites. Poult. Sci. 68, 1643-1652.
De Oliveira J.E., van der Hoeven-Hangoor E., van de Linde I.B., Montijn R.C. and van der Vossen J.M.B.M. (2014). In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch Salmonella susceptibility. Poult. Sci. 93, 818-829.
Del Cacho E., Gallego M., López-Bernad F., Quílez J. and Sánchez-Acedo C. (2004). Expression of anti-apoptotic factors in cells parasitized by second-generation schizonts of Eimeria tenella and Eimeria necatrix. Vet. Parasitol. 125, 287-300.
D'Mello J.P.F. (2003). Amino Acids as Multifunctional Molecules. Pp. 8 in Amino Acids in Animal Nutrition. J.P.F. D'Mello, Ed. CABI Publishing, United Kingdom.
Duckworth R.A., Mendonc M.T. and Hill G.E. (2001). A condition dependent link between testosterone and disease resistance in the house finch. Proc. R. Soc. Lond. B. Biol. Sci. 268, 2467-2472.
Erasmus J., Scott M.L. and Levine P.P. (1960). A relationship between coccidiosis and vitamin A nutrition in chickens. Poult. Sci. 39, 565-572.
Fernando M.A. and McCraw B.M. (1973). Mucosal morphology and cellular renewal of chickens following a single infection of Eimeria acervulina. J. Parasitol. 59, 493-501.
Fuller R. (1989). Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378.
Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M. and Ley K. (2010). Development of monocytes, macrophages and dendritic cells. Science. 327, 656-661.
Guo Y.L., Li W.B. and Chen J.L. (2010). Influence of nutrient density and lighting regime in broiler chicken: Effect on antioxidant status and immune function. Br. Poult. Sci. 51, 222-228.
Hayashi K., Nagai Y., Ohtsuka A. and Tomita Y. (1994). Effects of dietary corticosterone and trilostane on growth and skeletal muscle protein turnover in broiler cockerels. Br. Poult. Sci. 35, 789-798.
Kamath P.S., Phillips S.F. and Zinsmeister A.R. (1988). Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology. 95, 1496-1502.
Khodambashi Emami N., Daneshmand A., Zafari Naeini S., Graystone E.N. and Broom L.J. (2017). Effects of commercial organic acid blends on male broilers challenged with E. coli K88: Performance, microbiology, intestinal morphology, and immune response. Poult. Sci. 96, 3254-3263.
Korver D.R., Wakenell P. and Klasing K.C. (1997). Dietary fish oil or lofrin, a 5-lipoxygenase inhibitor, decrease the growth-suppressing effects of coccidiosis in broiler chicks. Poult. Sci. 76, 1355-1363.
Krams I., Vrublevska J., Cirule D., Kivleniece I., Krama T., Rantala M.J., Sild E. and Hõrak P. (2012). Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comp. Biochem. Physiol. A. 161, 422-428.
Leeson S., Caston L. and Summers J.D. (1996). Broiler response to diet energy. Poult. Sci. 75, 529-535.
Majidi-Mosleh A., Sadeghi A.A., Mousavi S.N., Chamani M. and Zarei A. (2017). Effects of iIn ovo infusion of probiotic strains on performance parameters, jejunal bacterial population and mucin gene expression in broiler chicken. Br. J. Poult. Sci. 19, 97-102.
Majidzadeh Heravi R., Kermanshahi H., Sankian M., Nassiri M.R., Heravi Moussavi A., Roozbeh Nasiraii L. and Varasteh A.R. (2011). Screening of lactobacilli bacteria isolated from gastrointestinal tract of broiler chickens for their use as probiotic. African J. Microbiol. Res. 5, 1858-1868.
Mohiti-Asli M. and Ghanaatparast-Rashti M. (2015). Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Prev. Vet. Med. 120, 195-202.
Mountzouris K.C., Tsitrsikos P., Palamidi I., Arvaniti A., Mohnl M., Schatzmayr G. and Fegeros K. (2010). Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 89, 58-67.
Nabizadeh A., Golian A., Hassanabadi A. and Zerehdaran S. (2017). Effects of nutrient density and exogenous enzymes in starter diet on performance, intestinal microflora, gut morphology and immune response of broiler chickens. Br. J. Poult. Sci. 19, 509-518.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Ola F.A.T., El Meghanawy R.A. and Lashin I.A. (2017). Biochemical and immunological effect of some probiotic compounds against coccidiosis in broiler chickens. Anim. Health Res. J. 5, 93-100.
Pender C.M., Kim S., Potter T.D., Ritzi M.M., Young M. and Dalloul R.A. (2016). Effects of in ovo supplementation of probiotics on performance and immunocompetence of broiler chicks to an Eimeria challenge. Benef. Microbes. 30, 699-705.
Perez-Carbajal C., Caldwell D., Farnell M., Stringfellow K., Pohl S., Casco G., Pro-Martinez A. and Ruiz-Feria C.A. (2010). Immune response of broiler chickens fed different levels of arginine and vitamin E to a coccidiosis vaccine and Eimeria challenge. Poult. Sci. 89, 1870-1877.
Piątkowska M., Jedziniak P. and Żmudzki J. (2012). Residues of veterinary medicinal products and coccidiostats in eggs – causes, control and results of surveillance program in Poland. Polish J. Vet. Sci. 15, 803-812.
Pourakbari M., Seidavi A.R., Asadpour L. and Martínez Marín A.L. (2016). Probiotic level effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers. An. Acad. Bras. Ciênc. 88, 1011-1021.
Ramirez G.A., Yacoub M.R., Ripa M., Mannina D., Cariddi A., Saporiti N., Ciceri F., Castagna A., Colombo G. and Dagna L. (2018). Eosinophils from physiology to disease: A comprehensive review. Biomed. Res. Int. 2018, 1-28.
Rochell S.J., Helmbrecht A., Parsons C.M. and Dilger R.N. (2016). Influence of dietary amino acid reductions and Eimeria acervulina infection on growth performance and intestinal cytokine responses of broilers fed low crude protein diets. Poult. Sci. 95, 2602-2614.
Samour J. (2006). Diagnostic value of hematology. Pp 587-609 in Clinical Avian Medicine. G.J. Harrison and T.L. Lightfoot, Eds. Spix Publishing, Palm Beach, Florida.
SAS Institute. (2004). SAS®/STAT Software, Release 9.3. SAS Institute, Inc., Cary, NC. USA.
Seifi K., Karimi Torshizi M.A., Rahimi S. and Kazemifard M. (2017). Efficiency of early, single-dose probiotic administration methods on performance, small intestinal morphology, blood biochemistry, and immune response of Japanese quail. Poult. Sci. 96, 2151-2158.
Shini S., Shini S., Shini A. and Huff G.R. (2009). Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol. Behav. 98, 73-77.
Southern L.L. and Baker D.H. (1983). Eimeria acervulina infection and the zinc-copper interrelationship in the chick. Poult. Sci. 62, 401-404.
Su S., Miska K.B., Fetterer R.H., Jenkins M.C. and Wong E.A. (2014). Expression of digestive enzymes and nutrient transporters in Eimeria acervulina-challenged layers and broilers. Poult. Sci. 93, 1217-1226.
Su S., Miska K.B., Fetterer R.H., Jenkins M.C. and Wong E.A. (2015). Expression of digestive enzymes and nutrient transporters in Eimeria-challenged broilers. Exp. Parasitol. 150, 13-21.
Takaki M., Mawe G.M., Barasch J.M., Gershon M.D. and Gershon M.D. (1985). Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. J. Neurosci. 16, 223-240.
Uni Z. (1999). Functional development of the small intestine in domestic birds: cellular and molecular aspects. Avian Poult. Biol. Rev. 10, 167-179.
Wang H., Ni X., Qing X., Liu L., Xin J., Luo M., Khalique A., Dan Y., Pan K., Jing B. and Zeng, D. (2018a). Probiotic Lactobacillus johnsonii BS15 improves blood parameters related to immunity in broilers experimentally infected with subclinical necrotic enteritis. Front. Microbiol. 9, 49-58.
Wang W.C., Yan F.F., Hu J.Y., Amen O.A. and Cheng H.W. (2018b). Supplementation of Bacillus subtilis based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J. Anim. Sci. 96, 1654-1666.
Willemsen H., Everaert N., Witters A., De Smit L., Debonne M., Verschuere F., Garain P., Berckmans D., Decuypere E. and Bruggeman V. (2008). Critical assessment of chick quality measurements as an indicator of post-hatch performance. Poult. Sci. 87, 2358-2366.
Yin H., Sumners L.H., Dalloul R.A., Miska K.B., Fetterer R.H., Jenkins M.C., Zhu Q. and Wong E.A. (2015). Changes in expression of an antimicrobial peptide, digestive enzymes, and nutrient transporters in the intestine of E. praecox-infected chickens. Poult. Sci. 94, 1521-1526.
Yun C.H., Lillehoj H.S. and Lillehoj E.P. (2000). Intestinal immune response to coccidiosis. Dev. Comp. Immunol. 24, 303-324.