Effects of Spirulina platensis on Growth Performance, Carcass Characteristics, Egg Traits and Immunity Response of Japanese Quails
محورهای موضوعی : Camel
1 - Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 - Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
کلید واژه: immunity, egg quality, quail, <i>Spirulina platensis</i>,
چکیده مقاله :
In present study, two trials had been conducted to evaluate the effects of Spirulina platensis (SP) on growth performance, carcass characteristics, egg quantity and quality traits, and immunity response of Japanese quails. In trial 1, a total number of 180 one-day-old Japanese quails were randomly assigned into 6 groups, 3 replicates with 10 quail chicks per replicate. Experimental diets including basal diet (with no additive), diet contained probiotic, and diets contained 4 levels of SP (2.5, 5, 10, 20 g/kg diet). In trial 2, a total number of 250 Japanese laying quails were randomly assigned into 5 groups, 5 replicates with 10 laying quails per replicate. Experimental diets included of basal diet (no additive) and diets supplemented with three levels of SP (1, 3 or 5 g/kg diet). In experiment 1, using 5 g SP/kg diet caused higher body weight gain and European production efficiency factor during 1-35 d of age (P<0.05). Using SP at the levels of 2.5 or 5 g/kg diet increased breast percentage (P<0.05). In experiment 2, using different levels of SP decreased shell thickness, albumen height, haugh unit and yolk height in laying quails (P<0.05). However, Feeding different levels of SP increased (P< 0.05) egg yolk color compared to control group linearly. Dietary supplementation of SP at levels of 3 and 5 g/kg diet decreased cholesterol level per g yolk (P<0.05). Different levels of SP caused higher levels of total antibody against sheep red blood cells (SRBC) and IgG titers (P<0.05). Laying quails fed with 3 or 5 g SP/kg showed higher cutaneous basophil hypersensitivity after 12 or 24 h of phytohemagglutinin injection (P<0.05). In conclusion, we recommend using SP at the levels of 5 and 3 g/kg diet during growth and laying period of Japanese quails, respectively.
در مطالعه حاضر، 2 آزمایش جهت ارزیابی تأثیر اسپیرولینا پلاتنسیس بر عملکرد رشد، خصوصیات لاشه، صفات تخم و پاسخ ایمنی بلدرچینهای ژاپنی طراحی شد. در آزمایش 1، تعداد 180 قطعه جوجه بلدرچین یکروزه به طور تصادفی به 6 گروه، 3 تکرار با 10 جوجه بلدرچین در هر تکرار اختصاص داده شد. جیرههای آزمایشی شامل جیره پایه (بدون افزودنی)، جیره حاوی پروبیوتیک، و جیرههای حاوی 4 سطح اسپیرولینا پلاتنسیس (5/2، 5، 10، 20 گرم/کیلوگرم جیره) بود. در آزمایش 2، تعداد 250 قطعه بلدرچین ژاپنی تخمگذار به طور تصادفی به 5 گروه، 5 تکرار با 10 بلدرچین تخمگذار در هر تکرار اختصاص یافت. جیرههای آزمایشی شامل جیره پایه (بدون افزودنی)، و جیرههای مکمل شده با 3 سطح اسپیرولینا پلاتنسیس (1، 3 یا 5 گرم/کیلوگرم جیره) بود. در آزمایش اول، استفاده از 5 گرم اسپیرولینا در هر کیلوگرم جیره سبب افزایش وزن بدن بیشتر و افزایش شاخص کارایی تولید اروپایی طی 35-1 روزگی شد (05/0P<). استفاده از اسپیرولینا پلاتنسیس در سطوح 5/2 یا 5 گرم/کیلوگرم جیره درصد سینه را افزایش داد (05/0P<). درآزمایش دوم، استفاده از سطوح مختلف اسپیرولینا پلاتنسیس ضخامت پوسته، ارتفاع آلبومن، واحد هاو و ارتفاع زرده را در بلدرچینهای تخمگذار کاهش داد (05/0P<). استفاده از سطوح مختلف اسپیرولینا پلاتنسیس به طور خطی رنگ زرده تخم را در مقایسه با گروه شاهد افزایش داد (05/0P<). مکملسازی اسپیرولینا در سطوح 3 و 5 گرم/کیلوگرم جیره سطح کلسترول به ازای هر گرم زرده را کاهش داد (05/0P<). سطوح مختلف اسپیرولینا سبب افزایش عیار آنتیبادی تام علیه گلبول قرمز گوسفند و ایمونوگلوبولین G شد (05/0P<). بلدرچینهای تخمگذار تغذیه شده با 3 یا 5 گرم اسپیرولینا/کیلوگرم جیره، 12 یا 24 ساعت بعد از تزریق فیتوهماگلوتینین حساسیت پوستی بیشتری نشان دادند (05/0P<). در نتیجه کلی، ما استفاده از اسپیرولینا پلاتنسیس را در سطوح 5 و 3 گرم/کیلوگرم جیره به ترتیب طی دوره رشد و تخمگذاری بلدرچین ژاپنی توصیه میکنیم.
Al-Batshan H.A., Al-Mufarrej S.I., Al-Homaidan A.A. and Qureshi M.A. (2001). Enhancement of chicken macrophage phagocytic function and nitrite production by dietary Spirulina platensis. Immunopharm. Immunot. 23, 281-289.
Altmann B.A., Neumann C., Velten S., Liebert F. and Mörlein D. (2018). Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods. 7, 34-41.
AOAC. (1990). Official Methods of Analysis. 15th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Assis L.M.D., Machado A.R., Motta A.D.S.D., Costa J.A.V. and Soares L.A.D.S. (2014). Development and characterization of nanovesicles containing phenolic compounds of microalgae spirulina strain LEB-18 and Chlorella pyrenoidosa. Adv. Mater. Physics. Chem. 4, 6-12.
Belay A., Ota Y., Miyakawa K. and Shimamatsu H. (1994). Production of high quality spirulina at Earthrise farms. Pp. 92-102 in Algal Biotechnology in the Asia Pacific Region. S.W. Phang, Y.K. Lee, M.A. Borowitzka and B.A. Whitton, Eds. Kuala Lumpur, Malaysia.
Bensehaila S., Doumandji A., Boutekrabt L., Manafikhi H., Peluso I., Bensehaila K., Kouache A. and Bensehaila A. (2015). The nutritional quality of Spirulina platensis of Tamenrasset, Algeria. African J. Biotechnol. 14, 1649-1654.
Bermejo P., Pinero E. and Villar A.M. (2008). Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chem. 110, 436-445.
Beutler B. (2004). Innate immunity: An overview. Mol. Immunol. 40, 845-859.
Bonos E., Kasapidou E., Kargopoulos A., Karampampas A., Christaki E., Florou-Paneri P. and Nikolakakis I. (2016). spirulina as a functional ingredient in broiler chicken diets. South African J. Anim. Sci. 46, 94-102.
Canogulları Dogan S., Baylan M., Erdogan Z., Copur Akpınar G., Kucukgul A. and Duzguner V. (2016). Performance, egg quality and serum parameters of Japanese quails fed diet supplemented with Spiırulina platensis. Fresen. Environ. Bull. 25, 5857-5862.
Carrillo S., Lopez E., Casas M., Avila E., Castillo R.M., Carranco M.E., Calvo C. and Perez-Gil F. (2008). Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. J. Appl. Phycol. 20, 271-278.
Carter T.C. (1975). The hen's egg: Estimation of shell superficial area and egg volume, using measurements of fresh egg weight and shell length and breadth alone or in combination. British Poult. Sci. 16, 541-543.
Cheema M.A., Qureshi M.A. and Havenstein G.B. (2003). A comparison of the immune response of a 2001 commercial broiler with a 1957 random bred broiler strain when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82, 1519- 1529.
Chen J., Jiang Y., Ma K.Y., Chen F. and Chen Z.Y. (2011). Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase. J. Agric. Food Chem. 59, 6790-6797.
Cheong D.S.W., Kasim A., Sazili A.Q., Hishamuddin O.M.A.R. and Teoh J.Y. (2015). Effect of supplementing spirulina on live performance, carcass composition and meat quality of Japanese quail. Walailak J. Sci. Technol. 13, 77-84.
Corrier D.E. and DeLoach J.R. (1990). Evaluation of cellmediated, cutaneous basophil hypersensitivity in young chickens by an interdigital skin test. Poult. Sci. 69, 403-408.
Degnechew G.D. and Buzayehu D.B. (2018). Applications of Arthrospira platensis as an alternative source of food, maintaining nutritional security and awareness creation; there by reducing problems of malnutrition in the society. World News Natl. Sci. 19, 1-8.
Downham A. and Collins P. (2000). Colouring our foods in the last and next millennium. Int. J. Food Sci. Technol. 35, 5-22.
Duncan D.B. (1955). Multiple ranges and multiple F-test. Biometrics. 11, 1-42.
Evans A.M., Smith D.L. and Moritz. J.S. (2015). Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. J. Appl. Poult. Res. 24, 206-214.
Ferrira-Hermosillo A., Torres-Duràn P.V., Shamosh-Halabe S. and Juarez-Oropeza M.A. (2011). Biological effects of spirulina and current research on its antioxidant activity. Rev. Int. Cien. Tecnol. Biomed. 2, 1-13.
Finamore A., Palmery M., Bensehaila S. and Peluso I. (2017). Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxid. Med. Cell. Longev. 2017, 1-14.
Gong M. and Bassi A. (2016). Carotenoids from microalgae: a review of recent developments. Biotechnol. Adv. 34, 1396-1412.
Gutiérrez-Salmeán G., Fabila-Castillo L. and Chamorro-Cevallos G. (2015). Aspectos nutricionales y toxicológicos de spirulina (Arthrospira platensis). Nutr. Hosp. 32, 34-40.
Hajati H., Hassanabadi A., Golian A., Nassiri Moghaddam H. and Nassiri M. (2018). The effect of grape seed extract supplementation on performance, antioxidant enzyme activity, and immune responses in broiler chickens exposed to chronic heat stress. Iranian J. Appl. Sci. 8, 109-117.
Hemalatha K., Pugazhendy K., Jayachandran K., Jayanthi C. and Meenambal M. (2012). Studies on the protective efficacy of spirulina against lead acetate induced hepatotoxicity in Rattus norvegicus. Int. J. Chem. Anal. Sci. 3, 1509-1512.
Hirahashi T., Matsumoto M., Hazeki K., Saeki Y., Ui M. and Seya T. (2002). Activation of the human innate immune system by spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. Immunopharmacol. 2, 423-434.
Jamil A.B.M.R., Akanda R., Rahman M., Hossain A. and Islam S. (2015). Prebiotic competence of spirulina on the production performance of broiler chickens. J. Adv. Vet. Anim. Res. 2, 304-309.
Kanagaraju P. and Omprakash A.V. (2016). Effect of Spirulina platensis algae powder supplementation as a feed additive on the growth performance of Japanese quails. Indian Vet. J. 93, 31-33.
Katayama S., Kayahara Y. and Watanabe T. (2016). Enhancement of immunological responses by dietary Arthrospira platensis and possibility of field applications as alternative to antibiotics in broiler chicken. Am. J. Anim. Vet. Sci. 11, 18-24.
Kotrbacek V., Skrivan M., Kopecky J., Penkava O., Hudeckova P., Uhrikova I. and Doubek J. (2013). Retention of carotenoids in egg yolks of laying hens supplemented with heterotrophic Chlorella. Czech J. Anim. Sci. 58, 193-200.
Kul S. and Seker I. (2004). Phenotypic correlations between some external and internal egg quality traits in the Japanese quail (Coturnix coturnix japonica). Int. J. Poult. Sci. 3, 400-405.
Lindberg J.E., Lindberg G., Teräs J., Poulsen G., Solberg S.Ø., Tybirk K., Przedrzymirska J., Sapota G.P., Olsen M.L., Karlson H. and Jóhannsson R., Smarason R., Gylling B.o., Knudsen M., Dorca-Preda M.T., Hermansen T., Kruklite J.E. and Berzina Z. (2016). Nordic Alternative Protein Potentials. Nordic Council Ministers. Copenhagen, Denmark.
Luescher-Mattli M. (2003). Algae, a possible source for new drugs in the treatment of HIV and other viral diseases. Curr. Med. Chem. 2, 219-225.
Machu L., Misurcova L., Vavra Ambrozova J., Orsavova J., Mlcek J., Sochor J. and Jurikova T. (2015). Phenolic content and antioxidant capacity in algal food products. Molecules. 20, 1118-1133.
Mariey Y.A., Samak H.R. and Ibrahem M.A. (2012). Effect of using spirulina platensis algae as a feed additive for poultry diets: 1- productive and reproductive performances of local laying hens. Egypt Poult. Sci. 32, 201-215.
Mariey Y.A., Samak H.R., Abou-Khashba H.A., Sayed M.A.M. and Abou-Zeid A.E. (2014). Effect of using Spirulina platensis algae as a feed additive for poultry diets. Egypt Poult. Sci. 34, 245-258.
Neumann C., Velten S. and Liebert F. (2017). Improving the dietary protein quality by amino acid fortification with a high inclusion level of micro algae (Spirulina platensis) or insect meal (Hermetia illucens) in meat type chicken diets. Open J. Anim. Sci. 8, 12-18.
Nikodemusz E., Paskai P., Toth L. and Kozak J. (2010). Effect of dietary spirulina supplementation on the reproductive performance of farmed pheasants. Poult. Indust. 10, 1-2.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Park J.H., Lee S.I. and Kim I.H. (2018). Effect of dietary spirulina(Arthrospira platensis) on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult. Sci. 97, 2451-2459.
Park J.H., Upadhaya S.D. and Kim I.H. (2015). Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian-Australasian J. Anim. Sci. 28, 391-398.
Pasin G., Smith G.M. and Mahony M.O. (1998). Rapid determination of total cholesterol in egg yolk using commercial diagnostic cholesterol reagent. Food Chem. 61, 255-259.
Radhakrishnan S., Bhavan P.S., Seenivasan C. and Muralisankar T. (2017). Nutritional profile of Spirulina platensis, Chlorella vulgaris and Azolla pinnata to novel protein source for aquaculture feed formulation. Austin J. Aqua. Marine Biol. 2, 1-8.
Raju M.V.L.N., Rama Rao S.V., Radhika K. and Chawak M.M. (2004). Effects of Spirulina platensis or furazolidone on the performance and immune response of broiler chickens fed with aflatoxin contaminated diet. Indian J. Anim. Nutr. 21, 40-44.
Razafindrajaona J., Rakotozandriny J.N., Rakotozandrindrainy R., Tsivingaina A., Ramapiherika K.D. and Randria J. (2008). Influence de l’incorporation dans les provendes de la spiruline de madagascar (Spirulina platensis) sur la croissance des poulets de chair. Pp. 195 in Proc. Int. Symp. Spirulina, Toliara, Madagascar.
SAS Institute. (2001). SAS®/STAT Software, Release 8.2. SAS Institute, Inc., Cary, NC. USA.
Selim S., Hussein E. and Abou-Elkhair R. (2018). Effect of Spirulina platensis as a feed additive on laying performance, egg quality and hepatoprotective activity of laying hens. Eur. Poult. Sci. 82, 14-24.
Shanmugapriya B., Babu S.S., Hariharan T., Sivaneswaran S. and Anusha M.B. (2015). Dietary administration of Spirulina platensis as probiotics on health and histopathology in broiler chicks. Int. J. Recent. Sci. Res. 6, 2650-2653.
Shimkus A., Shimkiene A., Juozaitiene V., Zavodnik L., Juozaitis A. and Muzikevicius A. (2009). Influence of blue algae spirulina platensis on the productivity of sows. Dokladi na B lgarskata Akademiâ na Naukite. 62, 405-410.
Simsek N., Karadeniz A. and Karaca, T. (2007). Effects of the Spirulina platensis and Pana x ginseng oral supplementation on peripheral. Revue Méd. Vét. 158, 483-488.
Singh V., Pathak V. and Akhilesh K.V. (2012). Modified or enriched eggs: A smart approach in egg industry: Am. J. Food Technol. 7, 266-277.
Skrivan M., Englmaierova M., Skrivanova E. and Bubancova I. (2015). Increase in lutein and zeaxanthin content in the eggs of hens fed marigold flower extract. Czech J. Anim. Sci. 60, 89-96.
Sugiharto S., Yudiarti T., Isroli I. and Widiastuti E. (2018). Effect of feeding duration of Spirulina platensis on growth performance, haematological parameters, intestinal microbial population and carcass traits of broiler chicks. South Africa J Anim. Sci. 48, 98-107.
Takashi S. (2003). Effect of administration of spirulina on egg quality and egg components. Anim. Husb. 57, 191-195.
Tornabene T.G., Bourne T.F., Raziuddin S. and Ben-Amotz A. (1985). Lipid and lipopolysaccharide constituents of cyanobacterium Spirulina platensis (Cyanophyceae, Nostocales). Mar. Ecol. Prog. Ser. 22, 121-125.
Toyomizu M., Sato K., Taroda H., Kato T. and Akiba Y. (2001). Effects of dietary spirulina on meat colour in muscle of broiler chickens. Br. Poult. Sci. 42, 197-202.
Zahroojian N., Moravej H. and Shivazad M. (2013). Effects of dietary marine algae (Spirulina platensis) on egg quality and production performance of laying hens. J. Agric. Sci. Technol. 15, 1353-1360.
Zahroojian N., Moravej H. and Shivazad M. (2011). Comparison of marine algae (Spirulina platensis) and synthetic pigment in enhancing egg yolk colour of laying hens. Br. Poult. Sci. 52, 584-588.
Zhang H., Lin A., Sun Y. and Deng Y. (2001). Chemo-and radio-protective effects of polysaccharide of Spirulina platensis on hemopoietic system of mice and dogs. Acta Pharmacol. Sin. 22, 1121-1124.