Continuous Energy Values of 3-Amino-4-Nitraminofurazan Molecule by Modern Optimization Techniques
محورهای موضوعی : Data Envelopment AnalysisAhmet Sahiner 1 , Fatih Ucun 2 , Sumeyya Koman 3
1 - Department of Mathematics, Faculty of Sciences and Arts, Suleyman Demirel University , 32260, Isparta, Turkey
2 - Department of Physics, Faculty of Sciences and Arts, Suleyman Demirel University, 32260, Isparta, Turkey
3 - Department of Mathematics, Faculty of Sciences and Arts, Suleyman Demirel University , 32260, Isparta, Turkey
کلید واژه: fuzzy sets, DFT, Artificial Intelligence, Optimization Modelling, Nitraminofurazan,
چکیده مقاله :
The conformational energy values of 3-amino-4-nitraminofurazan (C2N4O3H2) molecule changing with two torsion angles were firstly calculated using density functional theory (DFT) with Lee-Young-Parr correlation functional and 6-31 G(d) basis set on Gaussian Program. And then, these obtained discrete data were made continuous by using Fuzzy Logic Modelling (FLM) and Artificial Neural Network (ANN). This allowed us to make predictions about the untested data and, to obtain the optimized energy value depending on two torsion angles with reasonable computational cost, great efficiency and high accuracy. The obtained results were compared with the DFT results by using regression analysis.
تغییـر مقـدار انـرژی سـازگار مولکـول (C2N4O3H2) با دو زاویه پیچشـی ابتدا بـا اسـتفاده از نظریـه تابع چگالـی (DFT) با تابع همبسـتگی -Lee-young par و31-6 مجموعـه پایـه بـر مجموعـهای در برنامه گاوسـی محاسـبه شـد. و پـس از آن، ایـن دادههـا گسسـته به دسـت آمـده با اسـتفاده از منطق مدلسـازی فـازی (FLM) و شـبکه عصبـی مصنوعـی (ANN) پیوسـته سـاخته شـد. این امـر بـه مـا اجـازه پیش بینـی در مورد دادههای تسـت نشـده و، به دسـت آوردن مقـدار انرژی بهینهسـازی شـده وابسـته بـه دو زاویـه چرخش با هزینه محاسـباتی منطقـی، کارایـی زیـاد و دقـت بـالا را میدهـد . نتایـج بـه دسـت آمـده بـا نتایج DFT بـا اسـتفاده از تجزیه و تحلیل رگرسـیون مقایسـه شـدند.
Fiolhais, C., Nogueira, F., & Marques, M. A. (Eds.). (2003). A primer in density functional theory (Vol. 620). Springer Science & Business Media.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Nakatsuji, H. (2009). Gaussian 09, revision D. 01.
Frish, A., Nielsen, A. B., & Holder, A. J. (2001). Gauss View User Manual, Gaussian Inc. Pittsburg, PA.
Gross, E. K. U., & Dreizler, R. M. (1990). Density functional theory: an approach to the quantum many-body problem.
Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56(5), 2257-2261.
Hehre, W. J., Lathan, W. A., Ditchfield, R., Newton, M. D., & Pople, J. A. (1970). GAUSSIAN 70, program no. 236. QCPE, Indiana University, Bloomington, Indiana, USA.
Jones, R. O. (2015). Density functional theory: Its origins, rise to prominence, and future. Reviews of modern physics, 87(3), 897
Klapötke, T. M., Schmid, P. C., & Stierstorfer, J. (2015). Crystal structures of furazanes. Crystals, 5(4), 418-432.
Koch, W., Holthausen, M. C., & Kaupp, M. (2001). BUCHER-A Chemist's Guide to Density Functional Theory. Angewandte Chemie-German Edition, 113(5), 989-989.
Kohn, W., Sham, L. J. (1965). Self-Consistent equations including exchange and correlation effects, Physical Reviev 140 ,A1133-A1138.
Lotfi Zadeh, A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249.
Lotfi Zadeh, A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Lotfi Zadeh, A. (1975). The concept of a linguistic variable and its application to approximate reasoning—II. Information sciences, 8(4), 301-357.
Lotfi Zadeh, A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information sciences, 9(1), 43-80.
Mamdani, E. H. (1974, December). Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the Institution of Electrical Engineers . 121(12) ,1585-1588.
NeuralWare, U. N. (1993). A Tutorial for NeuralWorks Professional II/Plus and NeuralWorks Explorer, NeuralWare. Inc., Pittsburgh, Pennsylvania.
Parr, R. G., & Yang, W. (1989). Density Functional Theory of Atoms and MoleculesOxford Univ. Press, New York.
Reveles, J. U., & Köster, A. M. (2004). Geometry optimization in density functional methods. Journal of computational chemistry, 25(9), 1109-1116.
Ruusunen, M., & Leiviskä, K. (2004). Fuzzy modelling of carbon dioxide in a burning process. Control Engineering Practice, 12(5), 607-614.
Sahiner, A., Gokkaya, H., & Ucar, N. (2013). NONLINEAR MODELLING OF THE LAYER NIICROHARDNESS OF Fe-Mn BINARY ALLOYS. JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 19(4), 508-519.
SAHINER, A., UCAR, N., & YILMAZ, N. (2013, September). New Optimization Techniques in Mechanical Characterization for β− Sn Single Crystals. In THE ABSTRACT BOOK (Vol. 7, No. 1, p. 174).
Şahiner, A., Yilmaz, N., & Demirozer, O. (2014). Mathematical modeling and an application of the filled function method in entomology. International Journal of Pest Management, 60(3), 232-237.
Sholl, D. S., Steckel, J. A. (2009). Density Functional Theory: A Practical Introduction, Wiley-VCH, John Wiley and Sons Inc., Weinheim, New York.
Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems–a review. Renewable and Sustainable Energy Reviews, 48, 585-607.
Sugeno, M., & Takagi, T. (1983). Multi-dimensional fuzzy reasoning. Fuzzy sets and systems, 9(1-3), 313-325.
Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics, (1), 116-132.
Tumac, D. (2016). Artificial neural network application to predict the sawability performance of large diameter circular saws. Measurement, 80, 12-20.
Young, D. (2001). Computational Chemistry, Wiley-Interscience, Appendix A. A.2.4, Gaussian.