Efficient Epoxidation of Alkenes using New Organometallic Catalysts ((E)-2,6-dimethoxy-4-((2-(5-methyl-1,3,4-thiadiazol-2-yl)hydrazono)methyl)phenol M: Cr, Fe, Co, Cu): An Antimicrobial and Theoretical Study of Catalyst
محورهای موضوعی : Iranian Journal of CatalysisRasha Mahmood 1 , Mohammed Abowd 2 , Asmaa Sabti 3
1 - Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
2 - Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, Iraq
3 - Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
کلید واژه: Antimicrobial, Epoxidation, catalyst, Alkene, DFT calculation, Organometallic,
چکیده مقاله :
In this research, a novel approach for the epoxidation of alkene derivatives was constructed. Based on this fact, the appropriate ligand was provided from the reaction of hydrazine hydrate and 5-methyl-1,3,4-thiadiazole-2-thiol. Then, after preparation of the intermediate compound, the treatment of the pointed compound and 4-hydroxy-3,5-dimethoxybenzaldehyde in the presence of a few drops of glacial acetic acid for 3h was done in order to a final ligand. Then, the synthesized ligand was metallated using Cr, Fe, Co, and Cu to obtain a series of organometallic catalysts. The synthesized organometallic catalysts were analyzed using CHNS analysis, FT-IR spectroscopy, and magnetic susceptibility. Then, the organometallic complexes containing (Chromium, Iron, Cobalt, and Copper) are applied in the epoxidation of various alkenes to provide corresponding target products and provide moderate to good yields. The prepared organometallic complexes were investigated relative to the reusability and loss of metal into the medium of the reaction. In addition, the optimized chemical structures of organometallic complexes were investigated using DFT calculation.
[1] K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev., 252 (2008) 1420-1450.
[2] K. Kar, D. Ghosh, B. Kabi, A. Chandra, A concise review on cobalt Schiff base complexes as anticancer agents, Polyhedron, (2022) 115890.
[3] H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H.A. Rudbari, A.A. Ardakani, S. Sedighi-Khavidak, K.S. Munawar, M. Ashfaq, M.N. Tahir, Synthesis, spectral characterization, crystal structures, biological activities, theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn (II) Schiff base complexes, Polyhedron, 213 (2022) 115636.
[4] A.S. Al-Wasidi, I.I.S. AlZahrani, H.I. Thawibaraka, A.M. Naglah, Facile synthesis of ZnO and Co3O4 nanoparticles by thermal decomposition of novel Schiff base complexes: Studying biological and catalytic properties, Arabian Journal of Chemistry, 15 (2022) 103628.
[5] A. Kumar, V. Bhakuni, Enantioselective epoxidation using liposomised m-chloro-perbenzoic acid (LIP MCPBA), Tetrahedron Lett., 37 (1996) 4751-4754.
[6] D.N. Platonov, G.P. Okonnishnikova, R.A. Novikov, K.Y. Suponitsky, Y.V. Tomilov, A novel and unusual reaction of 1,2,3,4,5,6,7-hepta(methoxycarbonyl)-cyclohepta-2,4,6-trien-1-yl potassium with organic azides, Tetrahedron Lett., 55 (2014) 2381-2384.
[7] T. Maharana, N. Nath, H.C. Pradhan, S. Mantri, A. Routaray, A.K. Sutar, Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes, React. Funct. Polym., 171 (2022) 105142.
[8] M. Samani, M.H. Ardakani, M. Sabet, Efficient and selective oxidation of hydrocarbons with tert-butyl hydroperoxide catalyzed by oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles, Res. Chem. Intermed., 48 (2022) 1481-1494.
[9] J. Rakhtshah, A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles, Coord. Chem. Rev., 467 (2022) 214614.
[10] M. Payam, H. Kargar, M. Fallah-Mehrjardi, Silica-coated nanomagnetite-supported oxovanadium(V) Schiff base complex: Preparation, characterization, and catalytic application for the oxidation of sulfides, Inorg. Chem. Commun., 145 (2022) 109951.
[11] M. Bashir, M. Saifullah, M. Riaz, M. Arshad, A. Irfan, S. Iqbal, Z.H. Farooqi, R. Begum, Schiff bases derived from phloroglucinol carbonyl variants and their applications-A review, Inorg. Chem. Commun., 152 (2023) 110690.
[12] H. Kargar, M. Moghadam, L. Shariati, N. Feizi, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K.S. Munawar, Synthesis, crystal structure, spectral characterization, theoretical studies, and investigation of catalytic activity in selective oxidation of sulfides by oxo-peroxo tungsten(VI) Schiff base complex, J. Mol. Struct., 1257 (2022) 132608.
[13] C. Boulechfar, H. Ferkous, A. Delimi, A. Djedouani, A. Kahlouche, A. Boublia, A.S. Darwish, T. Lemaoui, R. Verma, Y. Benguerba, Schiff bases and their metal complexes: a review on the history, synthesis, and applications, Inorg. Chem. Commun., (2023) 110451.
[14] T. Ashraf, B. Ali, H. Qayyum, M.S. Haroone, G. Shabbir, Pharmacological aspects of schiff base metal complexes: A critical review, Inorg. Chem. Commun., (2023) 110449.
[15] M. Zabiszak, J. Frymark, K. Ogawa, M. Skrobańska, M. Nowak, R. Jastrzab, M.T. Kaczmarek, Complexes of β-lactam antibiotics and their Schiff-base derivatives as a weapon in the fight against bacterial resistance, Coord. Chem. Rev., 493 (2023) 215326.
[16] K. Mondal, S. Mistri, Schiff base based metal complexes: A review of their catalytic activity on aldol and henry reaction, Comments Inorg. Chem., 43 (2023) 77-105.
[17] L.H. Abdel-Rahman, A.A. Abdelghani, A.A. AlObaid, D.A. El-ezz, I. Warad, M.R. Shehata, E.M. Abdalla, Novel Bromo and methoxy substituted Schiff base complexes of Mn (II), Fe (III), and Cr (III) for anticancer, antimicrobial, docking, and ADMET studies, Sci. Rep., 13 (2023) 3199.
[18] Y.-L. Dong, H.-R. Liu, S.-M. Wang, G.-W. Guan, Q.-Y. Yang, Immobilizing Isatin-Schiff Base Complexes in NH2-UiO-66 for Highly Photocatalytic CO2 Reduction, ACS Catal., 13 (2023) 2547-2554.
[19] C. Gautam, D. Srivastava, G. Kociok-Köhn, S.W. Gosavi, V.K. Sharma, R. Chauhan, D.J. Late, A. Kumar, M. Muddassir, Copper (ii) and cobalt (iii) Schiff base complexes with hydroxy anchors as sensitizers in dye-sensitized solar cells (DSSCs), RSC Adv., 13 (2023) 9046-9054.
[20] A.S. Mohammed, J.M. Alyass, K.I. Khallow, Synthesis and Characterization of Hybrid Dual Metallic Complexes of Schiff Base Containing (Cd and Mn/Fe/Co/Ni) Derived from Isatin and 1,4-Phenylenediamine As Novel Organometallic Catalysts for Rapid and Efficient Epoxidation of Alkenes, Iran. J. Catal., 12 (2022) 223-235.
[21] H. Zakeri, S. Rayati, G. Zarei, A. Parsa, F. Adhami, Mn(II)-Schiff base complex immobilized onto MCM-41 matrix as a heterogeneous catalyst for epoxidation of alkenes, Iran. J. Catal., 10 (2020) 71-78.
[22] M. Tayebani, B. Shafaat, M. Iravani, Hydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes, Iran. J. Catal., 5 (2015) 213-221.
[23] I.R. Parrey, A.A. Hashmi, B.L. Swami, S.A. AL-Thabaiti, Synthesis, characterisation and catalytic activity of Schiff base Cu(II) metal complex, Iran. J. Catal., 5 (2015) 89-95.
[24] M.K. Chug, E.J. Brisbois, Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials, ACS Materials Au, 2 (2022) 525-551.
[25] Q. Xu, K.-S. Huang, Y.-F. Wang, H.-H. Wang, B.-D. Cui, W.-Y. Han, Y.-Z. Chen, N.-W. Wan, Stereodivergent Synthesis of Epoxides and Oxazolidinones via the Halohydrin Dehalogenase-Catalyzed Desymmetrization Strategy, ACS Catal., 12 (2022) 6285-6293.
[26] R. Ma, X. Hua, C.-L. He, H.-H. Wang, Z.-X. Wang, B.-D. Cui, W.-Y. Han, Y.-Z. Chen, N.-W. Wan, Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes, Angew. Chem. Int. Ed., 61 (2022) e202212589.
[27] G. An, C.a. Wang, H. Gao, G. Wang, Y. Luo, Z. Liu, C. Xia, S. Liu, X. Peng, Z. Cheng, X. Shu, A novel MOFs-induced strategy for preparing anatase-free hierarchical TS-1 zeolite:synthesis routes, growth mechanisms and enhanced catalytic performance, J. Colloid Interface Sci., 633 (2023) 291-302.
[28] S. Singh, D.B. Singh, B. Gautam, A. Singh, N. Yadav, Chapter 19 - Pharmacokinetics and pharmacodynamics analysis of drug candidates, in: D.B. Singh, R.K. Pathak (Eds.) Bioinformatics, Academic Press2022, pp. 305-316.
[29] M.S.S. Adam, S. Shaaban, N.M. El-Metwaly, Two ionic oxo-vanadate and dioxo-molybdate complexes of dinitro-aroylhydrazone derivative: Effective catalysts for epoxidation reactions, biological activity, ctDNA binding, density functional theory, and in silico investigations, Appl. Organomet. Chem., 36 (2022) e6763.
[30] B.N. Patra, P. Ghosh, N. Sepay, S. Gayen, S. Koner, P. Brandao, Z. Lin, R. Debnath, J.L. Pratihar, T. Maity, D. Mal, Aerobic epoxidation of olefins by carboxylate ligand-based cobalt (II) compound: synthesis, X-ray crystallography, and catalytic exploration, Appl. Organomet. Chem., 36 (2022) e6552.
[31] S. Verma, A. Joshi, S.R. De, J.L. Jat, Methyltrioxorhenium (MTO) catalysis in the epoxidation of alkenes: a synthetic overview, New J. Chem., 46 (2022) 2005-2027.
[32] M. Li, L. Ma, L. Luo, Y. Liu, M. Xu, H. Zhou, Y. Wang, Z. Li, X. Kong, H. Duan, Efficient photocatalytic epoxidation of styrene over a quantum-sized SnO2 on carbon nitride as a heterostructured catalyst, Applied Catalysis B: Environmental, 309 (2022) 121268.
[33] Y. Wu, Z. Chen, Y. Wang, J. Xu, Kinetic Studies and Reaction Network in the Epoxidation of Styrene Catalyzed by the Temperature-Controlled Phase-Transfer Catalyst [(C18H37)2(CH3)2N]7[PW11O39], Indust. Eng. Chem. Res., 61 (2022) 10747-10755.
[34] R.A. Bepari, P. Bharali, B.K. Das, Synthesis of nanoscale CuO via precursor method and its application in the catalytic epoxidation of styrene, RSC Adv., 12 (2022) 6044-6053.
[35] S. Chatterjee, S. Das, P. Bhanja, E. E. S, R. Thapa, S. Ruidas, S. Chongdar, S. Ray, A. Bhaumik, Ag nanoparticles immobilized over highly porous crystalline organosilica for epoxidation of styrene using CO2 as oxidant, Journal of CO2 Utilization, 55 (2022) 101843.
[36] Y. Fu, L. Liu, S. Tricard, K. Liang, J. Zhang, J. Fang, J. Zhao, Slow pyrolysis of Cu/Co-Co Prussian blue analog to enhance catalytic activity and selectivity in epoxidation of styrene, Appl. Catal., A, 657 (2023) 119161.
[37] Y. Zhang, A. Iqbal, J. Zai, S.-Y. Zhang, H. Guo, X. Liu, I. ul Islam, H. Fazal, X. Qian, Bromine and oxygen redox species mediated highly selective electro-epoxidation of styrene, Organic Chemistry Frontiers, 9 (2022) 436-444.
[38] Y. Zhang, A. Iqbal, J. Zai, W. Li, H. Guo, X. Meng, W. Li, I.u. Islam, Z. Xin, X. Qian, Balanced cathodic debromination and hydrogen evolution reactions endow highly selective epoxidation of styrene, Composites Part B: Engineering, 246 (2022) 110281.
[39] Z. Zhang, J. Tang, J. Chen, P. Cui, S. Jiao, W. Yi, Q. Ke, H. Yang, Efficient epoxidation of styrene within pickering emulsion-based compartmentalized microreactors, Catal. Today, 410 (2023) 222-230.
[40] W. Emori, G.J. Ogunwale, H. Louis, E.C. Agwamba, K. Wei, T.O. Unimuke, C.-R. Cheng, E.U. Ejiofor, F.C. Asogwa, A.S. Adeyinka, Spectroscopic (UV–vis, FT-IR, FT-Raman, and NMR) analysis, structural benchmarking, molecular properties, and the in-silico cerebral anti-ischemic activity of 2-amino-6-ethoxybenzothiazole, J. Mol. Struct., 1265 (2022) 133318.
[41] P.V. Ramana, Y.R. Krishna, K.C. Mouli, Experimental FT-IR and UV–Vis spectroscopic studies and molecular docking analysis of anti-cancer drugs Exemestane and Pazopanib, J. Mol. Struct., 1263 (2022) 133051.
[42] S. Janeoo, Reenu, A. Saroa, R. Kumar, H. Kaur, Computational investigation of bioactive 2,3-diaryl quinolines using DFT method: FT- IR, NMR spectra, NBO, NLO, HOMO-LUMO transitions, and quantum-chemical properties, J. Mol. Struct., 1253 (2022) 132285.
[43] B. Maleki, R. Sandaroos, S. Peiman, Mn (III) Schiff base complexes containing crown ether rings immobilized onto MCM-41 matrix as heterogeneous catalysts for oxidation of alkenes, Heliyon, 9 (2023).
[44] C.A. Salubi, Heterogeneous vanadium Schiff base complexes in catalytic oxidation reactions, UWC Scholar Publication, 2023 (2023) 110-119.
[45] J. Liu, W. Wang, L. Wang, P. Jian, Heterostructured V2O5/FeVO4 for enhanced liquid-phase epoxidation of cyclooctene, J. Colloid Interface Sci., 630 (2023) 804-812.
[46] A. Malik, U.P. Singh, Functionalized MCM-41 based recyclable catalyst (MCM-41@CP@PAL@Cu) for the epoxidation of alkenes using tert-BuOOH, J. Porous Mater., (2023) 2012-2019.
[47] M. Abboud, N. Al-Zaqri, T. Sahlabji, M. Eissa, A.T. Mubarak, R. Bel-Hadj-Tahar, A. Alsalme, F.A. Alharthi, A. Alsyahi, M.S. Hamdy, Instant and quantitative epoxidation of styrene under ambient conditions over a nickel(ii)dibenzotetramethyltetraaza[14]annulene complex immobilized on amino-functionalized SBA-15, RSC Adv., 10 (2020) 35407-35418.